Exercises 1-3 are "compulsory" and 4 is a "bonus problem" (marked always with ${ }^{\dagger}$ or ${ }^{\dagger t \dagger}$ ). Notice exceptional time and place, Monday 18.4. 14-16 room CK111.

Exercise 1. (a) As a motivation consider the random curve $\gamma$ of Schramm's principle with arbitrary parametrization in the domain $(\mathbb{H}, 0, \infty)$. Let $r>0$ and $\tau=\frac{1}{2} \operatorname{cap}_{\mathbb{H}}(\gamma[0, \sigma])$, where $\sigma$ is the first time that satisfies $|\gamma(\sigma)|=r$. Let $T_{0}=\lim _{t \rightarrow \infty} \frac{1}{2} \operatorname{cap}_{\mathbb{H}}(\gamma[0, t])$. Write $T_{0}=\tau+T_{1}$. Explain based on CI and DMP why $T_{0}$ and $T_{1}$ are equal in distribution and $T_{1}$ and $\tau$ are independent.
(b) Show that if $\tau, T_{0}, T_{1}$ are $[0,+\infty]$-valued random variables, $\tau$ is positive with positive probability, $T_{1}$ and $\tau$ are independent, $T_{0}$ and $T_{1}$ are equal in distribution and $T_{0}=\tau+T_{1}$, then $T_{0}$ and $T_{1}$ are almost surely equal to $+\infty$.
Hint. You can use the Laplace transform (a.k.a. the moment-generating function) to solve this problem.

Exercise 2. (a) Let $\nu \in \mathbb{C}$ with $|\nu|=1$ and let $0<\alpha<1$. Show that $z \mapsto \nu z^{\alpha}$ defines a conformal conformal map from $\mathbb{H}$ to $\mathbb{C}$ (for any continuously chosen branch). Find $\nu=\nu(\alpha)$ such that the image domain is symmetric with respect to the $y$-axis and lies in $\mathbb{H}$.
(b) Let $h(z)=\operatorname{Im}\left(\nu z^{\alpha}\right)$ where $\nu=\nu(\alpha)$ is as above. Show that there is a constant $C=$ $C(\alpha) \geq 1$ such that $C^{-1}|z|^{\alpha} \leq h(z) \leq C|z|^{\alpha}$ for all $z \in \overline{\mathbb{H}}$.

Exercise 3 (Almost surely $\tau(z)<\infty$ when $\kappa>4$ ).
(a) Consider $\operatorname{SLE}(\kappa)$ with $\kappa>4$ and let $\alpha=\alpha(\kappa)=1-4 / \kappa$. Show that the real and imaginary parts of $Z_{t}^{\alpha}$ are local martingales where $Z_{t}=g_{t}(z)-W_{t}, z \in \mathbb{H}$, and $W_{t}=-\sqrt{\kappa} B_{t}$. Conclude that $h\left(Z_{t}\right)$ is a local martingale.
(b) For any $R>0$, define $\sigma_{R}=\tau(z) \wedge \inf \left\{t \in[0, \tau(z)):\left|Z_{t}\right|=R\right\}$. We make the assumption that $\sigma_{R}<\infty$ almost surely. (See the article Rohde\&Schramm, Basic properties of SLE, Lemma 6.5., for the proof of this fact.) What is the geometric description of $\sigma_{R}$, that is, it is the exit time of $Z_{t}$ from which set? What are the possible values of $Z_{\sigma_{R}}$ ?

Let $h$ be as in Exercise 2. Show that $h\left(Z_{t \wedge \sigma_{R}}\right)$ is a martingale and show that there exist a constant $\tilde{C}=\tilde{C}(\kappa) \geq 1$ such that

$$
\tilde{C}^{-1}\left(\frac{|z|}{R}\right)^{\alpha} \leq \mathrm{P}\left[\left|Z_{\sigma_{R}}\right|=R\right] \leq \tilde{C}\left(\frac{|z|}{R}\right)^{\alpha} .
$$

Hint. Use the optional stopping theorem.
(c) Deduce that for $\kappa>4$ and for any $z \in \mathbb{H}$, almost surely $\tau(z)<\infty$.
${ }^{\dagger}$ Exercise 4 (Girsanov transformation for random walk).
Let $\Omega=\left\{\omega: \mathbb{Z}_{+} \rightarrow \mathbb{Z}: \omega(0)=0\right\}$. Let $X_{n}(\omega)=\omega(n), n \in \mathbb{Z}_{+}$, be the coordinate maps and let $\mathcal{F}$ be the $\sigma$-algebra generated by $X_{n}, n \in \mathbb{Z}_{+}$. The space $(\Omega, \mathcal{F})$ is the canonical space for $\mathbb{Z}$-valued discrete-time stochastic processes. Suppose that there is defined a family of probability measures $\mathrm{P}_{p}, 0<p<1$, on $(\Omega, \mathcal{F})$ such that for any $\mathrm{P}_{p}$ the increments $\xi_{n}=$ $X_{n}-X_{n-1}, n \in \mathbb{N}$, are independent and identically distributed as

$$
\mathrm{P}_{p}\left[\xi_{n}=1\right]=p, \quad \mathrm{P}_{p}\left[\xi_{n}=-1\right]=1-p .
$$

Define a filtration $\mathcal{F}_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right)=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right) \subset \mathcal{F}$.
(a) Let $\left.\mathrm{P}\right|_{\mathcal{A}}$ be the restriction of a probability measure P on a $\sigma$-algebra $\mathcal{A}$. Find an explicit formula for the Radon-Nikodym derivative

$$
M_{n}=\frac{\mathrm{dP}_{p} \mid \mathcal{F}_{n}}{\left.\mathrm{dP}_{1 / 2}\right|_{\mathcal{F}_{n}}}
$$

in terms of $n$ and $X_{n}$.
Hint. $\left.\mathrm{P}_{p}\right|_{\mathcal{F}_{n}}$ is a probability measure on a finite set and it is given by the finite collection of probabilities of singleton sets. Calculate $M_{n}$ as a ratio of those numbers.
(b) Show that $M_{n}$ is a martingale for the probability measure $\mathrm{P}_{1 / 2}$ and for the filtration $\left(\mathcal{F}_{n}\right)_{t \in \mathbb{Z}_{+}}$.
(c) Use the notation $M_{p, n}$ for the above quantity to highlight the dependency on $p$. Let $c \in \mathbb{R}$. For each $t \in \mathbb{R}_{+}$and $0<\varepsilon<|c|^{-1}$, define

$$
n^{(\varepsilon)}(t)=\left\lfloor\varepsilon^{-2} t\right\rfloor, \quad Y_{t}^{(\varepsilon)}=\varepsilon X_{n^{(\varepsilon)}(t)}, \quad p^{(\varepsilon)}=\frac{1}{2}(1+c \varepsilon)
$$

where $\lfloor x\rfloor$ is the largest integer less or equal to the real number $x$. Find the limit of $M_{t}^{(\varepsilon)}:=$ $M_{p^{(\varepsilon)}, n^{(\varepsilon)}(t)}$ as $\varepsilon \searrow 0$ in terms of $t, Y_{t}=\lim Y_{t}^{(\varepsilon)}$ and $c$.
Note. The scaled simple random walk $Y_{t}^{(\varepsilon)}$ converges as $\varepsilon \rightarrow 0$ in distribution to a Brownian motion in the topology of locally uniform convergence by Donsker's theorem.

