Chapter 3
Introduction to conformal mappings

In this chapter we present briefly some result of complex analysis which are useful
for our theory. We review topics related to harmonicity, e.g. explicit formulas for
Poisson kernels and relation to Brownian motion. We study continuity of conformal
maps up to the boundary and review the distortion estimates.

We assume that the reader is familiar with Complex analysis on the level of
Rudin’s book [6]. This chapter is supplemented by Appendix [C]

3.1 Harmonic functions

3.1.1 Mean value property and Poisson kernel

A domain is a non-empty, open and connected set. For a set A, A usually denotes its
closure, whereas the meaning of A* denotes on the context, but it is often related to
the complex conjugation of to other reflections. Some domains that we will consider
are the unit disc D = {z € C : |z] < 1}, the exterior of the unit disc D* = {z € C :
|z| > 1} and the upper half-plane HH = {z € C : Imz > 0}.

Let U be a domain in the complex plane. A twice continuously differentiable
function u : U — R is harmonic if Au = 0. A harmonic function u : U — R has
mean-value property in the sense that
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forany z € U and r > 0 such that B(0,7) C U. Conversely, if u : U — R is continuous
function that has the mean value property for every z € U and for every 0 <
r < ro(z) (note that ry(z) can be strictly less than the distance to the boundary), then
u is smooth and harmonic. See, for instance, [4] pp. 210, 218-220.
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40 3 Introduction to conformal mappings

When the mean value property is applied together with a Mobius transforma-
tion the mean value property can be written for any point in the disc (not just for
the center) as an integral over the boundary of the disc. Namely, if u : B(O,R) — R
is continuous function that is harmonic in B(0,R), then
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Pgo,r)(2,0) = [2—Rei®?
is called the Poisson kernel in B(0,R). This extends to discs B(zo,R) in an obvious
way by translation. -

Similarly in the upper half-plane, if « : HL — R is continuous and bounded and if
u is harmonic in H then u is given in terms of an integral of the Poisson kernel in H
as
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for any z € HL.

3.1.1.1 Harmonic conjugate

The harmonic conjugate of u is any harmonic function v such that f = u+iv is
holomorphic. If the function v exists, it is unique up to an additive constant. In a
simply connected domains the harmonic conjugate exists. This can be seen from the
Poisson kernel which can be written as

Re® —7
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Therefore if we take the imaginary part of the complex valued kernel (Re'® —
z)/ (Re'® + 7), then the corresponding integral gives the harmonic conjugate in the
disc. This can be summarized by an explicit formula for f in B(0,R) given u
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where C € R is a constant.

In simply connected domains, the harmonic extension via chains of pair-wise
overlapping discs is well-defined and hence v exists in the whole domain U. By
considering —if = v — iu, we see that —u is the harmonic conjugate of v.

! Harmonicity is preserved by any holomorphic change of coordinates.
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Fig. 3.1 By the Schwarz reflection principle, if U is a subdomain of the upper half-plane and a
part of the boundary lies on the real axis and if the imaginary part of f : U — C vanishes on J C R,
then f can be extended holomorphically to U UJUU*

3.1.2 Schwarz reflection principle

Another consequence of the mean value property characterization of harmonic func-
tions is the Schwarz reflection principle: if f = u+iv is holomorphic in Dy =
B(0,r) NH and if lim,_,,v(z) = 0 as z € D, tends to any x € (—r,r), then f has
a unique holomorphic extension to B(0,r). Namely, v(z) = —v(z) for any z € D_
defines a continuous extension of v to B(0,r) and this extension satisfies the mean
value property in B(0,r). Hence v is smooth and harmonic in B(0,r) and it has a
harmonic conjugate which is unique if we require that f = u+iv is in D,.. Hence f
is well-defined and holomorphic in B(0,r) and satisfies

f@)=r@). (3.4)

More generally, if U C H is a domain and J C RN AU is non-empty set such that
each point x € J satisfies the condition that B(x,r) NH C U for some r > 0 and if
f : U — C is holomorphic function such that limIm f(z) = 0 as z tends to J, then
there exists a unique holomorphic extension of f to U UJUU™ and the extension
satisfies (3.4). Here U* is the reflection of U with respect to the real axis.

3.1.3 Harmonicity and complex Brownian motion

Under suitable conditions on the domain U and on the function / : U — R harmonic
in U and its boundary values ¢ = h|yy, the function & can be represented using the
complex Brownian motion as

h(z) = E°[¢(B-)]

where 7 is the exit time of (B,)t€R>0 from U and E? is the expected value with
respect to the law of the complex Brownian motion (B;);ck., sent from z.



42 3 Introduction to conformal mappings

Lemma 3.1. Let U be a domain and h : U — R be a bounded continuous function
such that h is harmonic in U. Let P* be the law of a complex Brownian motion
(By)icRr., Started from z € U and E* be the corresponding expected value. Assume
that T = inf{t € R>o : B, ¢ U} is almost surely finite. Then h(B;rz) is a bounded
continuous martingale and

h(z) = E* [ (By)).

Proof. The fact that M, = h(B;i)TZ) is a local martingale follows from It6’s formula
similarly as in the proof of the conformal invariance of Brownian motion. Since 4 is
bounded, M; is a bounded continuous martingale and we can use optional stopping
to show that My = E[M]. O

3.2 Conformal maps

Definition 3.1. A map f: U — C is a conformal map if and only if it is holomorphic
and injective. A univalent function is the same as a conformal map.

When a map f: U — U’ is conformal and onto, i.e., f is conformal and f(U) =
U’, we state explicitly the fact that the map is onto.

If f is conformal, locally near zp, we have the absolutely convergent expansion

f(@) = f(z0)+ f(20)(z—z20) + .-

It is necessary that f(zp) # 0 based on the expansion, otherwise f wouldn’t be in-
jective near zo. Thus if we ignore the small correction of order |z — zo|?, locally the
map f translates zo to f(zo), rotates around that point by multiplying by the complex
number (of unit modulus) f”(zo)/|f”(z0)| and scales by the factor | f’(zo)|. The intu-
itive definition of a conformal map is that it is a map that is locally a combination
of translation, rotation and scaling.

If f: U — C is holomorphic and f’(z9) # 0, then it is continuously invertible near
z0 and the inverse is holomorphic, [4] p. 165. Therefore the inverse of a conformal
map is conformal.

However, the fact that f' # 0 everywhere is not sufficient for f to be injective
globally. For example, consider the map z + z” in the domain C\ {0}. Its derivative
is non-zero everywhere, but it is not injective because 7> = (—z).

Example 3.1. The most elementary examples of conformal maps are the Mobius
maps, which can be interpreted as the conformal self-maps of the Riemann sphere
C=cu {eo}. As linear fractional transformations they map any circle of the Rie-
mann sphere onto a circle. Let’s recall that the conformal self-maps of the upper
half-plane H = {z € C : Imz > 0} and the conformal maps from the upper-half
plane H onto the unit disc D = {z € C : |z] < 1} are Mbius maps and of the fornﬂ

2 In the first map, either a or b can be co. In that case, take the corresponding limit of the expression
which is normalized in such a way that the limit is finite for fixed 7.
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a—bz—a Z—w
=V —,

z— A
a z—b’ 7—w

respectively, where A > 0, a,b € R witha # b, v € T = dD and w € H. See also
Appendix [C]

3.2.1 Riemann mapping theorem

The Riemann mapping theorem establishes existence of conformal maps between
simply connected domains.

A domain U C C is simply connected if its complement @ \ U in the Riemann
sphere is connected. For example S = {z € C : 0 < Imz < 1} is simply connected
because the parts Imz < 0 and Imz > 1 can be connected through infinity. An
equivalent definition of simply connectedness is that each closed loop in U is null-
homotopic, that is, each loop can be continuously shrunk to a trivial loop. See [6]
for more details.

Theorem 3.1 (Riemann mapping theorem). Suppose U C C is a simply connected
domain other than C and w € U. Then there exist a unique conformal map f from
U onto D such that f(w) =0 and f(w) > 0.

The proof can be found for instance from [6].

Remark 3.1. All the other conformal maps from U onto I are obtained by compos-
ing f with a Mobius self-map of the disc.

Remark 3.2. Notice thatif U ¢ Cis a simply connected domain and w ¢ U, then the
image U of U under z+ 1/(z—w) is bounded. Therefore U is a subset of C. Con-
sequently, by the Riemann mapping theorem, if U;,U, C C are simply connected
domains and C \ Uy contains at least two distinct points for k = 1,2, then there ex-
ists a conformal map from U; onto U, and we say that U; and U, are conformally
equivalent.

3.2.2 Continuity up to the boundary

In this section, we follow Ahlfors [1]] and Pommerenke [5]], see also [2].

Let’s first see what type of continuity up to the boundary follows from the fact
that ¢ is a homeomorphism, that is, a continuous map with a continuous inverse.

For that purpose, we define what we mean when we say that a sequence or a
curve tends to the boundary domain. Let U be a non-empty open set, z, € U a
sequence and y: [0,1) — U a curve. Remember that a curve in a topological space
X is a continuous map from an interval of R into X. We say that (z,) or y(¢) tends
to the boundary if (z,) or y(t) will stay eventually away from any point in U, more
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(a) If f: U — U’ is a homeomorphism and y(r) is (b) Schwarz reflection

a curve that tends to the boundary, then the image  principle can be applied

F(y(r)) tends to the boundary. However, it is not al-  in those boundary arcs

ways true that f(y(¢)) extends continuously toitsend  that are straight line

point, not even when ¥ extends continuously to its segments and  away

end point. from other parts of the
boundary.

Fig. 3.2 By Theorems and conformal map maps boundary to boundary and extends con-
tinuously and injectively to a piece of boundary which is a straight line segment, an arc of a circle
or an analytic curve.

formally, for each z € U there exist €(z) > 0 and no(z) € N such that |z —z,| > €(z)
for n > ny(z) or there exist £(z) > 0 and 0 <1y(z) < 1 such that |z—y(r)| > €(z) for
fo(z) <r < 1.

The discs B(z,€(z)) form an open covering of U and for any compact K C U
there is a finite subcover. Hence we see that z, or y(r) will stay eventually away
from any compact K C U in the sense that there exist no(K) € Nand 0 < #(K) < 1
such that z, ¢ K for n > no(K) and y(¢) ¢ K for 1p(K) <t < 1. After noticing this
the following theorem is almost trivial.

Theorem 3.2. Let U and U’ be non-empty open subsets of C and let f : U — U’ be a
homeomorphism. If (z,) or Y(t) tends to the boundary of U, then (f(z,)) or f(y(t))
tends to the boundary of U'.

Proof. Let K C U’ be compact. Then by continuity of f~!, the set f~!(K) is com-
pact and there is np € N and 0 < #y < 1 such that z, ¢ f~'(K) for n > no and
y(t) ¢ f~1(K) for ty <t < 1. Therefore f(z,) ¢ K for n > ny and f(y(t)) ¢ K for
to <t < 1. The claim follows by taking K to be a closed ball. a

Next we state and prove a theorem based on the Schwarz reflection principle that
gives the continuity of f to the boundary arcs which are straight line segments.

Suppose that the boundary of U contains an open straight line segment c. By
applying rotation and translation, we can assume that c is the interval a < x < b
on the real line. Suppose also that every point on ¢ has an open neighborhood in
C whose intersection with the whole boundary dU is the same as with the arc c.
By this assumption each point in ¢ is now a center of a disc whose diameter is a
subset of ¢, and which ¢ divides in to two half-discs which are either completely
inside or outside of U. Notice that at least one of the half-discs is inside U. Since ¢
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is connected, the property, whether one or two half-discs are inside U, is the same in
each point. Therefore we can name these cases as one-sided free arc and two-sided
free arc. See Figure[3.2(b)| where ¢; and ¢, are one-sided free arcs.

Theorem 3.3 (Schwarz reflection principle for conformal maps). Let U be a do-
main with one-sided free arc c. Then any conformal onto map [ :U — D can be
extended to a holomorphic and injective map on U U c. The image of ¢ is an arc ¢’
on the unit circle dD. Furthermore, if we apply the same extension to two or more
one-sided free arcs, then the resulting extension is holomorphic and injective.

Proof. Let ¢ be one-sided free arc and x € ¢ and D a half-disc neighborhood of x
which is contained in U. We can assume that the point f~!(0) is not in D by choos-
ing smaller D if necessary. Then log f(z) has single valued branch in D and its real
part tends to 0 as z € D tends to ¢, because by the previous theorem |f(z)| goes to 1.
Therefore by the Schwarz reflection principle (3.4), log f(z) has holomorphic exten-
sion to DU cU D% where D* is the reflection of D with respect to R. Therefore f(z)
can be extended holomorphically to a disc around z. The extensions in overlapping
disc must coincide and therefore f has holomorphic extension to ¢ and |f(z)| = 1
when z € c. Call the neighborhood of ¢ which lies outside U as U_. Then f is now
definedon UUcUU_.

Clearly the extension is one-to-one if we manage to prove that f(x) # f(x’) for
any x,xX' € ¢, x # x after all in |f| < 1 in U, |f|=1oncand |f| > 1in U_ and
in addition in U_, f is by construction one-to-one. Assume that for some x,x’ € c,
x#x, f(x) = f(x'). We can assume that f(x) = 1.

Notice that f/(x) # 0 and f'(x') # 0. Otherwise f(z) = co+ cu(z —x)" + ...
around x, say, where n > 2 and ¢, # 0. The interval (1 — &, 1] would have n fold
preimage under f and those paths would meet at angles 27 /n at x or x'. Since n > 2,
at least one of them would intersect with D* which leads to a contradiction. Thus
f'(x) #0and f'(x") # 0 and f is locally holomorphically invertible near x and x’.
A similar argument shows that any neighborhoods of x and x' are intersected by
F~1({1 —¢}) for small € > 0. This leads to a contradiction with the injectivity of f
in U. The last claim follows from the same argument. a

Remark 3.3. The previous theorem has a modification for ¢ which is an arc of a circle
or more generally for ¢ which is an image of line segment under a holomorphic map
(c is called an analytic arc).

A compact set A C C is said to be locally connected if for every € > 0 there is
6 > 0 such that for any two points a,b € A with |a — b| < §, there exist a closed
connected set B with a,b € B C A and diam B < €. For non-bounded closed A C
€, we could adjust this definition and the next theorem by defining metric on the
Riemann sphere € that makes C a compact space.

Theorem 3.4. Let U C C be a bounded domain. A conformal onto map f: 1D — U
extends continuously to DU D if and only if AU is locally connected.

For the proof, see Appendix [C|
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If f:D — U is as in the previous theorem and if it extends continuously to the
boundary, then U is a closed curve that can be parametrized as 6 + f(¢®). On the
other hand, any closed curve is locally connected. Hence f extends continuously to
the boundary if and only if the boundary is a curve. Clearly this extension is injective
if and only if 8 — f(e'®) is a simple curve. Hence the previous theorem implies that
f extends to a continuous and injective map from D onto U if and only if U is a
Jordan domain In fact, the inverse map is in that case continuous to the boundary
and any conformal map between two Jordan domains extends to a homeomorphism
between their closures.

3.2.3 Schwarz—Christoffel maps

Conformal mappings that map the unit disc or the upper half-plane onto the interior
of a polygon form a useful class of conformal mappings, because they have fairly
explicit formulas. If a point p is mapped to a vertex of the polygon with interior an-
gle am, the map looks locally like a constant times (z — p)%. The following theorem
gives the precise statement.

Theorem 3.5. Let U be the interior of a polygon 7y with vertices wi,wa,...,w, and
interior angles Q1,0 ,. .., 0. Then any conformal and onto map f:H — U
with f(e0) = wy, is of the form

z n—1
fe=c+e [ TIE - 3.5)
k=1

where C1 and Cy are constants and wy = f(z), k=1,2,...,n— 1.

The proof is presented in Appendix [C| The formula (3.3)) is called the Schwarz-
Christoffel formula.

Example 3.2. Letn =3 and o = 1/3 for all k = 1,2,3. Suppose that z; =0,z = 1
and z3 = co. Then any conformal map from H onto an equilateral triangle 7 such
that z;,22,z3 are mapped to the vertices 7, is of the form

f(2) =C1+C2/Zci%(§—1)7%dc'

The pair of constants Cy,C, corresponds to the position, orientation and size of 7.

Example 3.3. Let n = 4 and oy = 1/2 for all k = 1,2,3,4. Suppose that z; = 0,
22 =x€(0,1),z3 =1 and z4 = o. Then any conformal map from H onto a rectangle
R such that 71,2, 73,24 are mapped to the vertices R, is of the form

fa=c+e [ ¢ He-ng-n

3 A curve is Jordan if it is simple closed curve. A domain is Jordan if it’s boundary is Jordan curve.



3.3 From Area theorem to distortion 47

The pair of constants Cy,C; still corresponds to the position, orientation and size of
R. The value of zp = x is treated as a parameter and it in one-to-one correspondence
with the aspect ratio of R.

3.3 From Area theorem to distortion
In this section we present some classical result about the following two classes of
functions:

Definition 3.2. The class S consists of all holomorphic and univalent functions in D
such that
f@) =z+mP+as+..., |z <1. (3.6)

The class X consists of all holomorphic and univalent functions in D* = {z € C :
|z] > 1} such that

g(2)=z+bo+biz +hz P 4., o> 1. (3.7)
Notice that if f € S, then
g)=1/f N =z—ar+ (3 —a3)z ' +... (3.8)

belongs to X and g(z) # 0 for all z € D*. Conversely if g belongs to X and g(z) # 0
for all z € D*, then

f)=1/g(z”") =z—bo + (b5 — 1)’ +...

belongs to S.

The area of a bounded domain U, whose boundary is a smooth curve, can be
computed as Area(U) = £ [, xdy —ydx = 4[5, Wwdw. This is a consequence of so
called Green’s theorem which is a special case of Stokes’ theorem for two dimen-
sions. If g € X and we apply formula for the area inside 8 — g(re'®), r > 1, we get
the formula

Area(C\g(D*)) =7 (1 - i n|bn|2> .
n=1

The reader can verify the details or see [3]], p. 29, for the proof. The next theorem
follows immediately from the area formula.

Theorem 3.6 (Area theorem). For any g € X,

Y nlpa* <1
n=1
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Fig. 3.3 A map f from D into D can be studied by the Loewner equation in D by defining a curve
that first goes from dD to d f(ID) and then follows the boundary of the image domain d f (D).

If f € S and the coefficients are as in (3.6), then there exists odd functionﬂh es
such that h(z) = v/ f(z2) and

h(z) =z+ %azz3 +...
The function / can be constructed as follows: The function ¢(z) = log(f(z)/z) has
single-valued branch in D, because f(z)/z is holomorphic and doesn’t have zeros
in . Choose the branch for instance so that ¢ (0) = 0. Hence f(z) = zexp¢(z) and
h(z) = zexp(¢(z*)/2) is in S and satisfies the required properties. Therefore
and the Area theorem imply that for any f € S

The result (3.9) is called Bieberbach’s theorem and it is a special case of the follow-
ing famous and difficult theorem.

Theorem 3.7 (Bieberbach conjecture — de Branges theorem). For any f € S,
la,| <n,n=2,3,...

Remark 3.4 (A historical remark). In 1923, Charles Loewner (his birth name was
Karel Lowner in Czech and he used also the name Karl Léwner as a German ver-
sion of his name) was studying the Bieberbach conjecture in the paper where he
introduced the Loewner equation. He was studying conformal maps from the unit-
disc, and therefore he introduced the Loewner equation in D (for maps f; : D — D;)
where it is written as

z+el

7 — el

o fi(z) = ftl(z) <

for a conformal map f; from DD onto a simply connected domain D; C D, 0 € Dy,
normalized by the expansion near 0

4 The function £ is odd if h(—z) = —h(z).
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filz)=ez+...

The Loewner equation holds, for instance, when D, = D\ ¥((0,¢]) where y: [0,T] —
C is a simple curve with ¥(0) € dD and y((0,T]) C D. The function ¢ — U; is real
and continuous.

Let 0 € D C D be a simply connected domain. By approximation we can al-
ways assume that the boundary of D is a simple curve. By considering a curve ¥(t),
t € [0,T], as in Figure [3.3| which first follows a curve from dD to @D (a line seg-
ment, say) and then follows dD in counterclockwise direction, say, we can use the
Loewner equation to study the conformal map ¢ from ID onto D satisfying ¢ (0) =0,
¢'(0) > 0, because ¢ = fr. Using this approach Charles Loewner was able to show
that for any f € S (which has an expansion of the form (3.6))

|a3\§3

which is another special case of the Bieberbach—de Branges theorem.

3.3.1 Further consequences of Bieberbach’s theorem

One of the consequences Bieberbach’s theorem (3.9) is the following. Let’s use
dist(x,A) to denote the Euclidian distance from a point x to a set A.

Theorem 3.8 (Koebe 1/4 theorem). Let f € S and U = f(D) then

< dist(0,dU) < 1

FN.

Proof. Let f € Sand w ¢ f(D). Suppose that the expansion of f is given by (3.6).
Then w # 0 and the map

_wf@) (L
g(z)—w_f(z)—z+<2+W)12+...

is holomorphic and univalent in ID. The details are left to the reader. Thus by Bieber-
bach’s theorem (3.9), 1/|w| — |az| < |1/w —az| < 2 and consequently, 1/|w| < 4,
which gives the lower bound.

Let d = dist(0,dU). Define a conformal map /4 from D into D by h(z) = f~!(d2).
Now #'(0) =d/f'(0) = d and by the Schwarz lemma |#'(0)| < 1. O

To apply Bieberbach’s theorem (3.9) to a less restricted class of functions, define
for any f univalent in D and for any w € D a function

FER) =100 (1 o)
(- WD) *( =M 5w )Z T

h(z) =

2
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We leave as an exercise to verify the expansion. Since & € S, this expansion and
(3:9) imply the following result.

Proposition 3.1. If f maps D conformally into C and if z € D then

/!
f / (&) ool < 4.
1'(z)
The previous result can be integrated (see [3]], p. 32) to give'Koebe’s theorem,
a result which, for example, tells how f distorts circles 0 +— re'®. The first of the
inequalities tells that 8 — f(re®) lies between two particular circles centered at

f(0) and the second inequality tells that the length of this curve is bounded from
below and from above by certain constants.

(1-1z*)

Theorem 3.9 (Koebe distortion theorem). If f maps D conformally into C and if

z €D then
/ ‘Z| / |Z|
7Ol o < O~ FO1 < 17O
/ - |Z| / / 1+ ‘Z|
POl <V IOl T

3.4 Harmonic measure

Recall the representation of harmonic functions using a Brownian motion of Sec-
tion [3.1.3] Because such functions with piecewise constant boundary values are so
important, we give such a function here a name.

Let U is a simply connected domain in C with a non-empty, locally connected
boundary. Let ¢ : U — D is a conformal and onto map.

Definition 3.3. Let z € U and E C dU a Borel set. Then harmonic measure of E
relative to U seen from z is defined as

_ 1 1—2?
HM(z,E,U) = HM(w, ¢~ (E), D :7/ Sl g
(Z ) (W¢ ( ) ) X 0-1(E) |Z—€le|2

Remark 3.5. The function z — HM(z,E,U) is harmonic in U and tends to one as
z tends to an interior (with respect to dU) point of E and to zero as z tends to
an interior point of JU \ E. This observation leads to generalizations of the con-
cept of harmonic measure to non-simply connected domains. For general domains,
HM(z,E,U) can be defined as supremum over /(z) where h is harmonic with con-
tinuous boundary values f = h|yy such that f < 1onE and f =0on Q\E.

Remark 3.6. If the boundary is non-simple and we wish to separete the “left-
hand and right-hand sides” of boundary points point we can use the formula
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HM(w, ¢! (E),DD) to do so. In this approach, the points in dID parametrize 02
and a generalized boundary point (also called prime end) is basically an equiva-
lence class of convergent sequences z, tending to the boundary of Q such that ¢(z,)
converges. Two sequences z, and w, are equivalent if ¢(z,) and ¢ (w,) tend to the
same limit point in .

Lemma 3.2 (Weak Beurling estimate). There exist constant o« > 0 and C > 0 such
that the following holds: Let D =D\ v[0,1) where y:[0,1) — D be a simple curve
with ¥(0) = 0 and lim, »; |y(t)| = 1. Let P* be the law of complex Brownian motion
(B)ier, send from z € D and let T be its exit time from D. Then for any z € D

P[|Bz| = 1] < Cle|*

Remark 3.7. The result is called weak since the proof below only gives that there is
some exponent o > 0. It doesn’t give the optimal exponent which is o = 1/2.

Proof. Consider a complex brownian motion send from w € C with |w| =2 and let
o =inf{r € R} : |[B;| =1 or 4}. By rotational invariance of the complex Brownian
motion

g = P"[B([0, 7]) contains a loop around 0]

is independent of w. Now g > 0 follows from a more general fact that the probability
that d-dimensional Brownian motion follows any given continuous path with a given
precision up to a given time is positive.

Let p = |z|. Now if |B;| = 1 then the Brownian motion B;,0 <7 < 7, will hit
the circles of radii ry = p 2%, k=0,1,2,...,n9(p) centered at O where n(p) is the
largest integer n such that p2" < 1. Denote the hitting times of those circles by
Ty, k=0,1,...,n9(p). If for some k =0, 1,...,n9(p) — 1, B, t > T, makes a loop
around 0 before hitting the circles of radii r;_; or r;y, then the Brownian motion
hits dD and |B;| < 1. Apply the strong Markov property for Ty, k=0, 1,...,n0(p) —
1, to show that

PE(Be| = 1] < (1—q)"®).

Then note that no(p) > (log(1/p))/(log2) — 1 and hence the claim holds for C =
1/(1-) and & = (log 1/(1 - ), (log2). 0
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