
Chapter 2
Introduction to stochastic calculus

In this chapter, we focus on the essential aspects of stochastic calculus, a theory of
integration with respect to Brownian-motion-type processes and their transforma-
tion properties. We select a “standard approach” to such questions and don’t make
shortcuts even though they might be possible under some additional assumptions.
We present here the proofs that are necessary for understanding the theory and leave
the less important ones to the appendices.

2.1 Brownian motion

Let’s use the following notation: Z≥0 = {k ∈Z : k≥ 0} and R≥0 = {x∈R : x≥ 0}.
Suppose throughout this text that we are given a probability space (Ω ,F ,P)

where Ω is a measurable space, F a σ -algebra on Ω and P a probability measure on
F . For more details, consult any book on probability theory, for instance, Durrett’s
book [2].

Definition 2.1. A stochastic process is a collection of random variables1 Xt indexed
by a variable t which we call time and which belongs to an ordered set I. A notation
(Xt)t∈I is used for a stochastic process.

Almost always I = R≥0 or I = Z≥0. Since t is regarded as time, we call the pro-
cess in those cases continuous time stochastic process and discrete time stochastic
process, respectively. In this text usually I = R≥0.

The mapping t 7→ Xt(ω) is called the path of (Xt)t∈I . For continuous time pro-
cesses the path regularity properties are usually essential already when defining the
process (as in the definition of Brownian motion below).

Remember that X is a normally distributed with mean µ and variance σ2 if and
only if

1 We use the standard notation X(ω), where ω ∈Ω and (usually) X(ω)∈R, for a random variable
on (Ω ,F ,P).
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P[X ∈ A] =
∫

A

1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
dx

for any Borel subset A of R.

Definition 2.2. A stochastic process (Bt)t≥0 is called a (standard one-dimensional)
Brownian motion if B0 = 0 and

1. Bt1 −Bs1 ,Bt2 −Bs2 , . . . ,Btn −Bsn are independent for any n ∈ N and for any 0 ≤
s1 < t1 ≤ s2 < t2 ≤ . . .≤ sn < tn.

2. For any s, t ≥ 0, Bs+t −Bs is normally distributed with mean 0 and variance t.
3. With probability one, t 7→ Bt is continuous.

Remark 2.1. We say that the process has independent and stationary increments, if
the properties 1. and 2. hold, respectively.

Remark 2.2. Brownian motion is a Gaussian process meaning that all finite dimen-
sional distributions are multivariate Gaussians. By the above definition, for any
0 ≤ s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sn < tn and any Borel sets Ak ⊂ R, k = 1,2, . . . ,n,
it holds that

P[Btk −Bsk ∈ Ak, ∀k = 1,2, . . . ,n] =
n

∏
k=1

∫
Ak

1√
2π(tk− sk)

exp
(
− x2

2(tk− sk)

)
dx.

The “canonical” probability space for Brownian motion is the space of contin-
uous functions C(R≥0) with a certain Borel probability measure P and where the
Brownian motion is the coordinate map Bt(ω) = ωt . If a Brownian motion exists in
some probability space, its distribution in C(R≥0) defines the ‘canonical” Brownian
motion. The typical rough appearance of a Brownian motion path is illustrated in
Figure 1.4.

There are many ways to construct a Brownian motion. One of them is given to
the reader as an exercise.2

Theorem 2.1. A probability space with a Brownian motion exists.

A related result is the following on its regularity.

Theorem 2.2. For each γ ∈ (0,1) and T > 0, there exists a random variable K > 0
such that almost surely

|Bt −Bs| ≤ K |t− s|γ

for all s, t ∈ [0,T ].

A standard d-dimensional Brownian motion is a Rd-valued stochastic process
(B(1)

t , . . . ,B(d)
t )t∈R≥0 where B(1)

t , . . . ,B(d)
t are independent standard one-dimensional

Brownian motions.
The following theorem shows that the assumption that the increments are normal

is partly redundant in the definition of Brownian motion.

2 The exercises have been written in a separate document(s).
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Theorem 2.3. If (Xt)t∈R≥0 is a continuous stochastic process which has independent
and stationary increments, then there exists a standard one-dimensional Brownian
motion (Bt)t∈R≥0 and real numbers α ≥ 0 and β such that Xt = αBt +β t.

Remark 2.3. The process Xt = αBt +β t is called a Brownian motion with a linear
drift.

Definition 2.3. A filtration on (Ω ,F ) is a collection (Ft)t∈R≥0 of sub-σ -algebras
Ft ⊂F such that for each 0≤ s < t, Fs ⊂Ft .

A filtration can be though as refining information on the probability space and Ft
as the information available at time t. For example, the σ -algebras generated by a
Brownian motion (Bt)t∈R+ , i.e. F B

t = σ(Bs, s∈ [0, t]), form a filtration (F B
t )t∈R+ .3

Definition 2.4. A stochastic process (Xt)t∈R+ on (Ω ,F ) is adapted to the filtration
(Ft)t∈R+ if for each t ≥ 0, Xt is Ft -measurable.

We will make the following more restrictive definition of Brownian motion.

Definition 2.5. A process (Bt)t≥0 is called a (standard one-dimensional) Brownian
motion with respect to the filtration (Ft)t∈R+ if it is adapted to (Ft)t∈R+ , B0 = 0
and

1. Bt −Bs are independent from Fs for any 0≤ s < t,
2. Bt −Bs, 0≤ s < t, is normally distributed with mean 0 and variance t− s
3. With probability one, t 7→ Bt is continuous.

Remark 2.4. In the definition (Ft)t∈R≥0 can be weakened to (F B
t )t∈R+ and there-

fore Definition 2.5 implies Definition 2.2. This definition is useful for instance when
two Brownian motions B(1) and B(2) are considered on the same probability space.

2.1.1 Quadratic variation of Brownian motion

Definition 2.6. Let p ≥ 1. Define the p’th variation of a process (Xt)t∈R+ as the
process

V (p)
X (t) = lim

mesh(π)→0

m(π)−1

∑
k=0

|Xtk+1 −Xtk |
p

where π is a partitions of [0, t] of the form π = {0 = t0 < t1 < .. . < tm(π) = t} and
the limit is in terms of convergence in probability as mesh(π) =maxk(tk+1−tk)→ 0
in the sense that that for each ε > 0 there exist δ > 0 such that

P

[∣∣∣∣∣m(π)−1

∑
k=0

|Xtk+1 −Xtk |
p−V (p)

X (t)

∣∣∣∣∣≥ ε

]
< ε

3 We use the standard notations σ(A,B, . . .) and σ(Ai, i ∈ I) for the σ -algebra generated by the
random variables A,B, . . . and Ai, i ∈ I, respectively.
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Fig. 2.1 If Brownian motion is conditioned for a particular end value at T , the resulting process is
called Brownian bridge. In the figure, 16 instances of Brownian bridge paths are plotted.

when mesh(π) < δ . We call the first variation (p = 1) as total variation and the
second variation (p = 2) as quadratic variation.

Proposition 2.1. The quadratic variation of a Brownian motion exist and V (2)
B (t) =

t.

Proof. Let ε > 0 and π be a partitioning with mesh(π) < (2t)−1 ε3. Let ∆k =
(Btk+1 −Btk)

2− (tt+1− tk)

E

(m(π)−1

∑
k=0

(Btk+1 −Btk)
2− t

)2
= ∑

k
E
[
∆

2
k
]
+2 ∑

j<k
E [∆ j∆k]︸ ︷︷ ︸

=0, by independence

=E[(N2−1)2]∑
k
(tk+1− tk)2 ≤ 2mesh(π)t.

Here N is normally distributed with mean zero and variance one and we used the
scaling property of Brownian motion. Hence by Chebyshev’s inequality [2]

P

[∣∣∣∣∣m(π)−1

∑
k=0

(Btk+1 −Btk)
2− t

∣∣∣∣∣≥ ε

]
≤ 2mesh(π)t

ε2 < ε (2.1)

and the convergence in probability follows. ut

The above proof and the Borel–Cantelli lemma, see e.g. [2], gives that the total
variation of a Brownian motion is almost surely infinite in the sense that if take the
limit along the sequence of dyadic partitions πn = {t k 2−n : k = 0,1,2, . . . ,2n} =
{t0 < t1 < .. . < t2n} of [0, t], then

lim
n→∞

∑
tk∈πn,k≤2n−1

|Btk+1 −Btk |= ∞ (2.2)
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almost surely. Namely, if we denote P[E(π)] the left-hand side of (2.1), then
∑nP[E(πn)]< ∞ and hence

∑
tk∈πn,k≤2n−1

(Btk+1 −Btk)
2→ t

almost surely by the Borel–Cantelli lemma. Take any ω for which the convergence
occurs. Then (2.2) is implied by the fact that as n→ ∞

∑
tk∈πn,k≤2n−1

(Btk+1(ω)−Btk(ω))2

︸ ︷︷ ︸
→t

≤ mesh(πn)︸ ︷︷ ︸
→0

∑
tk∈πn,k≤2n−1

|Btk+1(ω)−Btk(ω)|.

2.2 Stochastic integration

The goal of this section is to define a process Xt which can be interpreted as the
integral

Xt(ω) =
∫ t

0
f (t,ω)dBt(ω).

It is important because of the following reasons:

• It is tool for generating new stochastic processes out of Brownian motion.
• Coordinate changes such as f (Bt) turn out to have extremely useful representa-

tion using the above integral.
• It appears in many applications, since dBt models independent and stationary

noise.

The integral doesn’t exist as a pathwise Riemann–Stieltjes (or similar) integral
even for a continuous f , because the total variation of the Brownian motion is in-
finite. For instance, for the definition that we use, it holds that

∫ t
0 BsdBs 6= (1/2)B2

t
and therefore the usual integration by parts formula can’t hold.

2.2.1 Stochastic integral as L2-extension

In this section (Ft)t∈R≥0 is a filtration and (Bt)t∈R≥0 is a standard one-dimensional
Brownian motion with respect to (Ft)t∈R≥0 .

We need to define the correct set of integrands f for the stochastic integral. In
this subsection, they’ll be the measurable, adapted and square-integrable processes.

Definition 2.7. A stochastic process (Xt)t∈R≥0 is measurable if the mapping (t,ω) 7→
Xt(ω) is BR×F -measurable.

Definition 2.8. Let T > 0. We define L 2 to be the set of measurable, adapted pro-
cesses f that satisfy
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E

[∫ T

0
f (t, ·)2dt

]
< ∞ (2.3)

and we call f ∈L 2 simple if f can be written in the form

f (t,ω) =
n−1

∑
k=0

Xk(ω)1[tk,tk+1)(t) (2.4)

where 0 ≤ t0 < t1 < t2 . . . < tn ≤ T and Xk is a Ftk -measurable, square integrable
random variable.

Remark 2.5. The above class could be called as L 2(T ) and then we could set
f ∈ L 2 if and only if f ∈ L 2(T ) for any T > 0. However, we don’t make a big
difference between L 2(T ) and L 2, and consequently, we use the notation L 2 for
both classes.

Remark 2.6. Notice that L 2 is a closed subspace of L2(dt×dP).

We would like to define a mapping f 7→ I[ f ] which we later denote by

I[ f ](ω) =:
∫ T

0
f (t,ω)dBt(ω).

If that notation makes any sense, we need to define

I[1[s,t)] = Bt −Bs

for any 0≤ s < t ≤ T . Therefore for any f which is of the form (2.4) it is natural to
define by linearity that

I[ f ] =
n−1

∑
k=0

Xk(Btk+1 −Btk).

It turns out that this definition that works for any simple f ∈L 2 has a unique L2-
continuous extension to the whole L 2. Namely, we first observe that the following
isometry holds.

Proposition 2.2 (Itô isometry for simple processes). For any bounded, simple f ∈
L 2

E
[
I[ f ]2

]
= E

[∫ T

0
f (t, ·)2dt

]
.

Proof. Let’s calculate both sides explicitly for a bounded, simple f ∈ L 2 of the
form (2.4). Notice that f 2 = ∑

n−1
k=0 X2

k 1[tk,tk+1) and hence

E

[∫ T

0
f (t, ·)2dt

]
=

n−1

∑
k=0

E[X2
k ](tk+1− tk).

On the other hand
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E[I[ f ]2] = ∑
k
E
[
X2

k (Btk+1 −Btk)
2]+2 ∑

k<l
E[XkXl(Btk+1 −Btk)(Btl+1 −Btl )].

The facts that f is adapted, and thus Xk is Ftk -measurable, and that Btk+1 −Btk is
independent from Ftk imply that

E
[
X2

k (Btk+1 −Btk)
2]= E[X2

k ]E
[
(Btk+1 −Btk)

2]= E[X2
k ] (tk+1− tk)

E[XkXl(Btk+1 −Btk)(Btl+1 −Btl )] = E[XkXl(Btk+1 −Btk)]E[Btl+1 −Btl ] = 0

for k < l. The claim follows. ut

The simple processes are dense in L 2 by the next result. A sketch of its proof is
given in Appendix B.

Proposition 2.3. For each f ∈L 2, there exist a sequence of bounded, simple fn ∈
L 2 such that

E

[∫ T

0
( f (t, ·)− fn(t, ·))2dt

]
→ 0,

i.e. fn converges to f in L2(dt×dP).

If fn ∈ L 2 is a sequence of simple, bounded processes converging to f , then
fn is a Cauchy sequence in L2(dt × dP) and hence by the isometry property I[ fn]
is a Cauchy sequence if L2(dP) and hence it converges. Therefore we can define
I[ f ] = limn I[ fn]. Notice that this limit doesn’t depend on the choice of fn: if fn and
f ′n are two such sequences, then fn− f ′n goes to zero in L2(dt× dP) and hence by
isometry, limn I( fn) = limn I( f ′n) almost surely. This is summarized in the following
definition.

Definition 2.9. For any f ∈L 2, the stochastic integral (or Itô integral) is defined
to be ∫ T

0
f dBt(ω) := I[ f ](ω) := (lim

n
I[ fn)])(ω) (2.5)

where the limit is in L2(P) and fn ∈L 2 is any sequence of bounded, simple pro-
cesses converging to f in L2(dt×dP). The integral is defined almost surely.

Corollary 2.1 (Itô isometry for L 2). For any f ∈L 2

E

[(∫ T

0
f dBt

)2
]
= E

[∫ T

0
f 2dt

]
.

Corollary 2.2. If fn ∈ L 2, f ∈ L 2 and fn → f in L2(dt × dP) then
∫ T

0 fndBt →∫ T
0 f dBt in L2(P).

Example 2.1. We’ll show that ∫ t

0
BsdBs =

1
2

Bt −
1
2

t
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Let πn be a sequence of partitions of [0, t] such that mesh(πn)→ 0. By the above,
the sequence of processes fn(s,ω) = ∑t j∈πn Bt j(ω)1[t j ,t j+1)(s) is a reasonable choice
for a discretization of the integrand. Since

E

[∫ t

0
(Bs− fn(s, ·))2ds

]
= E

[
∑

j

∫ t j+1

t j

(Bs−Bt j)
2ds

]
= ∑

j

1
2
(t j+1− t j)

2→ 0

as n→ ∞, then by Corollary 2.2,
∫ t

0 BsdBs = lim
∫ t

0 fndBs = lim∑ j Bt j(Bt j+1 −Bt j).
Now notice that

B2
t j+1
−B2

t j
= (Bt j+1 −Bt j)

2 +2Bt j(Bt j+1 −Bt j)

and thus

∑
j

B j(Bt j+1 −Bt j) =
1
2

B2
t −

1
2 ∑

j
(Bt j+1 −Bt j)

2

and the second term on the right converges in L2 to the quadratic variation of Brow-
nian motion which we already showed to be t.

The following proposition states some properties of the stochastic integral. Those
properties hold for the simple processes and hence hold also for any limit of a se-
quence of simple processes.

Proposition 2.4. Let f ,g ∈L 2, a,b ∈ R and let 0≤ S <U < T . Then

1.
∫ T

S f dBt =
∫U

S f dBt +
∫ T

U f dBt

2.
∫ T

S (a f +bg)dBt = a
∫ T

S f dBt +b
∫ T

S gdBt

3. E[
∫ T

S f dBt ] = 0
4.
∫ T

S f dBt is FT -measurable

2.2.2 Stochastic integral as a process

2.2.2.1 Stochastic integral as a continuous martingale

Based on the results of Section 2.2.1, we try to define a process Xt such that Xt =∫ t
0 f dBs for every t. The problem in defining Xt = I[ f1[0,t]] is that the for each fixed

t, Xt is defined in a set of probability one, say, in Ωt , but it is possible that the
probability of the uncountable intersection

⋂
t Ωt is strictly less than 1 or even that⋂

t Ωt is not an event (a measurable set). Therefore we define Xt in this way in a
countable set of t and then extend by continuity of t 7→ Xt to other values of t as in
the following theorem. For the definition of a martingale consult Appendix A.

Theorem 2.4. For each f ∈L 2 there exists a continuous square integrable martin-
gale (Xt)t∈R+ such that for each t, Xt =

∫ t
0 f (s, ·)dBs almost surely.
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Remark 2.7. The process (Xt)t∈R≥0 is unique in the sense that if there is another
process (X ′t )t∈R≥0 with the same properties, then almost surely Xt = X ′t for all t.

Proof. Fix some T > 0. Take a sequence of simple (and bounded) fn ∈L 2 such that
fn→ f in L2(dt×dP, [0,T ]×Ω) and define X (n)

t = I[ fn1[0,t]] which is well-defined
in whole Ω . If fn = ∑ak1[tk,tk+1), then for tl ≤ t < tl+1 we have an explicit formula

X (n)
t = al · (Bt −Btl )+

l−1

∑
k=0

ak · (Btk+1 −Btk). (2.6)

Clearly t 7→ Xt is continuous. To show that it is a martingale, notice first that it is
adapted because all the random variables on the right of (2.6) are Ft -measurable.
Next notice that E[|X (n)

t |]< ∞, because it is a finite sum of integrable random vari-
ables. Finally, for 0≤ s < t ≤ T we can assume that s = tl and t = tm for some l and
m (redefine the “partitioning” of fn again if necessary) and then

E[X (n)
t |Fs] = E[X (n)

s |Fs]+E[
m−1

∑
k=l

ak · (Btk+1 −Btk)|Fs] = X (n)
s

because X (n)
s is Fs-measurable and by the properties of conditional expectation (see

Appendix A)

E[ak · (Btk+1 −Btk)|Fs] = E[E[ak · (Btk+1 −Btk)|Ftk ]|Fs]

= E[ak ·E((Btk+1 −Btk)|Ftk ]|Fs] = 0. (2.7)

Since X (n)
t −X (m)

t is a martingale, by Doob’s maximal inequality

P

[
sup

t∈[0,T ]

∣∣∣X (n)
t −X (m)

t

∣∣∣≥ ε

]
≤ 1

ε2E[|X
(n)
T −X (m)

T |
2]

=
1
ε2 ‖ fn− fm‖2

L2(dt×dP)

for any ε > 0. Choose a subsequence nk such that ‖ fnk+1− fnk‖2
L2(dt×dP) ≤ 2−3k and

use the previous estimate for ε = 2−k to get

P

[
sup

t∈[0,T ]

∣∣∣X (nk+1)
t −X (nk)

t

∣∣∣≥ 2−k

]
≤ 2−k

By the Borel–Cantelli lemma, there exist random variable N which is almost surely
finite and for k ≥ N(ω)

sup
t∈[0,T ]

∣∣∣X (nk+1)
t −X (nk)

t

∣∣∣< 2−k.
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Hence the sequence of the continuous processes (X (nk)
t ) converges almost surely

uniformly to a continuous process (Xt). Since for any fixed t, limX (nk)
t in L2(P) is∫ t

0 f dBs then

Xt =
∫ t

0
f dBs

almost surely. This also shows that (Xt) is adapted and square integrable.
Finally the martingale property of (X (n)

t ), for any 0≤ s < t ≤ T

X (n)
s = E[X (n)

t |Fs].

Since the random variables X (n)
s and X (n)

s converge in L2(P) to Xs and Xt , respec-
tively, then by the properties of conditional expectation (see Appendix A)

Xs = E[Xt |Fs].

for any 0≤ s < t ≤ T . For the whole R+, the claim follows from the above by taking
a countable sequence T ↗ ∞ and using the uniqueness. ut

Remark 2.8. The property that we used in (2.7) could be reformulated in the follow-
ing way: if (Mt)t∈R+ is a martingale and if 0≤ s≤ t ≤ u and Y is a Ft -measurable
bounded random variable, then

E[Y (Mu−Mt) |Fs] = 0.

We say that martingale increments Mu−Mt are orthogonal to Ft .

Definition 2.10. For any f ∈L 2, the stochastic integral (or Itô integral) is redefined
to be a continuous version of

∫ t
0 f dBs, which exists by the previous Theorem.

Remark 2.9. The processes (Xt)t∈R+ and (Yt)t∈R+ are versions of each other if
P[Xt = Yt ] = 1 for each t.

Definition 2.11. For any process Xt =
∫ t

0 f dBs, define the quadratic variation pro-
cess as

〈X〉t(ω) =
∫ t

0
f (s,ω)2dt.

The process 〈X〉 is the quadratic variation in the sense of Definition 2.6. We post-
pone the statement of that result. The following result gives a second interpretation
of the quadratic variation process.

Theorem 2.5. Let f ∈ L 2, Xt =
∫ t

0 f dBs and 〈X〉t as above. Then X2
t −〈X〉t is a

martingale.

Proof. We leave as an exercise to check this for bounded, simple f ∈L 2. In the gen-
eral case take a sequence of bounded, simple fn ∈L 2 and define X (n)

t =
∫ t

0 fndBs.
The claim follows easily from the L1(P) convergence of (X (n)

t )2− 〈X (n)〉t which
implies the L1(P) convergence of E[(X (n)

t )2−〈X (n)〉t |Fs] by the properties of con-
ditional expectation (see Appendix A). ut
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Next we define a stopping time which can be taught as the time when “some event
occurs” so that for each time instant, the question whether this event has already
occurred or not before or at that time is a “measurable question”.

Definition 2.12. A random variable τ : Ω → [0,∞] is called a stopping time with
respect to the filtration (Ft)t∈R+ if for all t ≥ 0,{ω : τ(ω)≤ t} ∈Ft .

An example of a stopping time is τA = inf{t ∈ R≥0 : Bt ∈ A} where A is a closed
or open set in R.

One way to describe the following result is that by that proposition, the pathwise
interpretation of the Itô integral makes sense: if two integrands have the same paths
up to a stopping time, then the integrals also agree up to that stopping time.

Proposition 2.5. If τ is a stopping time and f ∈ L 2 and g ∈ L 2 processes such
that f (t,ω) = g(t,ω) for any (t,ω) such that t ≤ τ(ω), then for almost all ω∫ t

0
f dBs(ω) =

∫ t

0
gdBs(ω)

for all t ≤ τ(ω).

For the proof see Appendix B.

2.2.2.2 Localization and a general class of integrands

At this point, we have the Itô integral defined for any measurable, adapted process
f such that

E

[∫ T

0
f 2dt

]
< ∞

for any T ∈ (0,∞). However, we would like to have a larger class of processes that
includes at least all the continuous processes, such as f (t,ω) = exp(Bt(ω)3) which
is an example of a process that doesn’t belong to L 2.

Definition 2.13. L 2
loc is definied to be the set of measurable, adapted process f such

that ∫ T

0
f (t, ·)2 dt < ∞

almost surely for any T ∈ (0,∞).

Fix some f ∈L 2
loc. Define a stopping time

τn(ω) = inf
{

t ∈ R+ :
∫ t

0
f (s,ω)2ds≥ n

}
.

It follows from f ∈L 2
loc, that τn↗ ∞ almost surely as n→ ∞.
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Let fn(t,ω) = f (t,ω)1t≤τn(ω). Then fn ∈L 2 and we can define the Itô integral

X (n)
t =

∫ t
0 fndBs. Since fn(t,ω) = fm(t,ω) for all (t,ω) such that t ≤ (τn ∧ τm)(ω)

and since τn∧ τm is a stopping time4, by Proposition 2.5 for almost all ω ,

X (n)
t (ω) = X (m)

t (ω)

for t ≤ (τn∧ τm)(ω).
For each fixed ω , this is a strong mode of convergence: there is a finite n0(ω)

such that X (n)
t (ω) = X (m)

t (ω) for any n,m≥ n0(ω). Define now a process (Xt)t∈R+

on the event {τn↗ ∞}
Xt(ω) = X (n)

t (ω)

where n ∈ N is any number satisfying τn(ω) ≥ t. The complement of the event
{τn↗ ∞} has zero probability and there we can define Xt = 0 identically, say.

Definition 2.14. The Itô integral of f ∈L 2
loc is defined as∫ t

0
f dBs(ω) = Xt(ω) = Xn

t (ω)

where n ∈ N is any number satisfying τn(ω)≥ t and Xn
t (ω) is as above.

For any continuous process (Xt)t∈R≥0 and for any stopping time τ , define a
stopped process (Xτ

t )t∈R≥0 by Xτ
t = Xt∧τ . The continuity of (Xt)t∈R≥0 guarantees

that Xτ
t is measurable.

Definition 2.15. A continuous process (Mt)t∈R≥0 adapted to (Ft)t∈R≥0 is called lo-
cal martingale if there exist a sequence of stopping times 0≤ τ1 ≤ τ2 ≤ . . . such that
P(τk ↗ ∞) = 1 and for each k, Mτk is a martingale. It is a local square integrable
martingale, if each (Mτk

t )t∈R≥0 is a square integrable martingale.

Remark 2.10. The use of stopping times of similar to τn, in Definitions 2.14 and
2.15, is called localization of the processes.

The next theorem lists the properties of Itô integral in its general form.

Theorem 2.6. For any f ∈L 2
loc, the processes Xt =

∫ t
0 f dBs and X2

t −〈X〉t are con-
tinuous local martingale. Furthermore, (Xt)t∈R≥0 has finite quadratic variation and
almost surely for any t

V (2)
X (t) = 〈X〉t .

The theorem follows from the properties of the Itô integral for L 2-integrands
and the construction of the integral using localization. For the proof last statement
see Appendix B.

4 The minimum of two stopping times is a stopping time.
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2.3 Itô’s formula

2.3.1 Itô’s formula for a Brownian motion

Itô’s formula is a result of central importance in stochastic calculus. We present
first the version of it for a Brownian motion. Itô’s formula shows that functions of
Brownian motion can be written as sum of a stochastic integral and a integral with
respect to dt.

Theorem 2.7 (Itô’s formula for a Brownian motion). Let F : R+×R→ R be a
continuous function such that Ḟ ,F ′,F ′′ exist and are continuous, where

Ḟ(t,x) =
∂F
∂ t

(t,x), F ′(t,x) =
∂F
∂x

(t,x) and F ′′(t,x) =
∂ 2F
∂x2 (t,x).

Then almost surely

F(t,Bt) = F(0,B0)+
∫ t

0
Ḟ(s,Bs)ds+

∫ t

0
F ′(s,Bs)dBs +

1
2

∫ t

0
F ′′(s,Bs)ds (2.8)

for any t ∈ R+. For the previous equation we will use the shorthand notation

dF(t,Bt) = Ḟ(t,Bt)dt +F ′(t,Bt)dBt +
1
2

F ′′(t,Bt)dt.

Proof (A sketch). The proof is based on the Taylor expansion of F(t,x) in both of
its variables.

Take a partition π of [0, t] and write a telescoping sum

F(t,Bt)−F(0,B0) =
m(π)−1

∑
k=0

(F(tk+1,Btk+1)−F(tk,Btk)).

By the mean value theorem

F(tk+1,Btk+1)−F(tk,Btk) = [F(tk+1,Btk+1)−F(tk,Btk+1)]+ [F(tk,Btk+1)−F(tk,Btk)]

=[F(tk+1,Btk+1)−F(tk,Btk+1)]︸ ︷︷ ︸
=ak

+F ′(tk,Btk)(Btk+1 −Btk)︸ ︷︷ ︸
=bk

+
1
2

F ′′(tk,ηk)(Btk+1 −Btk)
2︸ ︷︷ ︸

=ck

where ηk is a Ftk+1 -measurable random variable that lies on the interval between
Btk and Btk+1 . Take a sequence of partitions πn such that mesh(πn)→ 0 as n→ ∞.
The claim is that the sums ∑ak, ∑bk and ∑ck will converge to each of the three
integrals in (2.8), respectively. The convergence will be almost sure along suitable
subsequences of πn. For the rest of the proof see Appendix B. ut
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2.3.1.1 An example

Example 2.2. Let F(x) = x2/2 and let (Bt)t∈R+ be a one-dimensional Brownian mo-
tion with B0 = 0, then by Theorem 2.7

1
2

B2
t =

∫ t

0
BsdBs +

1
2

∫ t

0
ds

and hence after rearranging the terms∫ t

0
BsdBs =

1
2

B2
t −

1
2

t

which is in agreement with the result we obtained by directly applying the definition
of Itô integral.

2.3.2 Itô’s formula for semimartingales

Henceforth, we’ll write the time parameter of the integrands explicitly. Let’s first
study two stochastic integrals with respect to a common Brownian motion

Xt =
∫ t

0
fsdBs, Yt =

∫ t

0
gsdBs

where f ,g ∈L 2
loc. Their (quadratic) covariation process is defined as

〈X ,Y 〉t =
∫ t

0
fsgsds.

Then we notice that it satisfies the relation

4〈X ,Y 〉t = 〈X +Y 〉t −〈X−Y 〉t .

A similar relation can be written for the product XtYt and a sum of the form
∑k(Xtk+1 −Xtk)(Ytk+1 −Ytk). Consequently, XtYt −〈X ,Y 〉t is a local martingale and
along partitions of [0, t]

lim
mesh(π)→0

m(π)−1

∑
k=0

(Xtk+1 −Xtk)(Ytk+1 −Ytk) = 〈X ,Y 〉t (2.9)

in probability.
Let’s then consider the case of two stochastic integrals with respect to indepen-

dent Brownian motion. If (B(1),B(2)) is a standard two-dimensional Brownian mo-
tion and

Xt =
∫ t

0
fs dB(1)

s , Yt =
∫ t

0
gs dB(2)

s
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where f ,g ∈L 2
loc, then XtYt is a local martingale. The covariation process is

〈X ,Y 〉t = 0

and it satisfies (2.9) together with (Xt)t∈R≥0 and (Yt)t∈R≥0 . These statements can be
verified in the same manner as Theorem 2.6.

In the most general case, let (B(1)
t ,B(2)

t , . . . ,B(m)
t ) be a standard m-dimensional

Brownian motion. Let

Xt = X0 +
∫ t

0
fsds+

m

∑
k=1

∫ t

0
g(k)s dB(k)

s (2.10)

Yt = Y0 +
∫ t

0
f̂sds+

m

∑
k=1

∫ t

0
ĝ(k)s dB(k)

s

where X0 and Y0 are F0-measurable random variables, g(k), ĝ(k) ∈L 2
loc and f , f̂ are

measurable, adapted to (Ft)t∈R+ and satisfy

P

[∫ t

0
| fs|ds < ∞ for all t ∈ R+

]
= 1.

Then since integrals
∫ t

0 fsds have (locally) finite total variation, by the above it is
natural to define

〈X〉t =
m

∑
k=1

∫ t

0

(
g(k)s

)2
ds, 〈Y 〉t =

m

∑
k=1

∫ t

0

(
ĝ(k)s

)2
ds, 〈X ,Y 〉t =

m

∑
k=1

∫ t

0
g(k)s ĝ(k)s ds

which are the quadratic variation and covariation processes also in the sense of Def-
inition 2.6 and (2.9).

Definition 2.16. We call a process of the form (2.10) a semimartingale and use a
shorthand notation

dXt = ftdt +
m

∑
k=1

g(k)t dB(k)
t .

Remark 2.11. This is a slight abuse of standard terminology. More generally, semi-
martingale is any process that is sum of an adapted finite variation process and a
local martingale.

Next we present a version of Itô’s formula for semimartingales. An interesting
viewpoint to this result is that the class of semimartingales is closed under forming
new processes of the form F(X (1)

t , . . . ,X (n)
t ) from semimartingales (X (k)

t )t∈R≥0 , k =
1,2, . . . ,n.

Theorem 2.8 (Itô’s formula for semimartingales). Let 1≤ l ≤ n. Let X ( j)
t be semi-

martingales

dX ( j)
t = f ( j)

t dt +
m

∑
k=1

g( j,k)
t dB(k)

t
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for 1≤ j≤ n where f ( j) and g( j,k) are as above. Assume that g( j,k) = 0 identically for
j > l. Let F : Rn→R be continuous function such that ∂xiF exists and is continuous
for all 1≤ i≤ n and that ∂xi x j F exists and is continuous for all 1≤ i, j ≤ l.

Then Yt = F(X (1)
t , . . . ,X (n)

t ) is a semimartingale and almost surely

dYt =
n

∑
j=1

{
∂x j F(X (1)

t , . . . ,X (n)
t ) f ( j)

t dt +
m

∑
k=1

∂x j F(X (1)
t , . . . ,X (n)

t )g( j,k)
t dB(k)

t

}

+
1
2

l

∑
i, j=1

m

∑
k=1

∂xi,x j F(X (1)
t , . . . ,X (n)

t )g(i,k)t g( j,k)
t dt

for all t ∈ R+. This is written shortly as

dYt =
n

∑
j=1

(∂ jF) dX ( j)
t +

1
2

l

∑
i, j=1

(∂i jF) d
〈

X (i),X ( j)
〉

t
.

Remark 2.12. Note that the theorem includes the case when F depends explicitly on
time: let l < n and take X (n)

t = t. Theorem 2.7 is a special case of Theorem 2.8.

Remark 2.13 (Rules for stochastic calculus). Let Yt = F(X (1)
t , . . . ,X (n)

t ). Then the
reader can memorize Itô’s formula for Yt by writing formally Zt+dt = Zt + dZt for
any semimartingale Zt and then take the Taylor expansion of F at (X (1)

t , . . . ,X (n)
t )

and then use the rules

dt2 = 0, dt dB(i)
t = 0, dB(i)

t dB( j)
t = δi jdt.

2.3.2.1 An example

Example 2.3. Let (B(1)
t , . . . ,B(m)

t ) be m-dimensional standard Brownian motion, m≥
2, started from (B(1)

0 , . . . ,B(m)
0 ) 6= 0 and let F(x1, . . . ,xm) =

(
∑

m
k=1 x2

k

)1/2. Then by

Itô’s formula Yt = F(B(1)
t , . . . ,B(n)

t ) satisfies

dYt = ∑
k

B(k)
t dB(k)

t

Yt
+

m−1
2Yt

dt.

2.4 Further topics in stochastic calculus

2.4.1 When is a semimartingale a local martingale?

The following result is based on the observation that
∫ t

0 fsds has finite total varia-
tion, where as for every continuous martingale it is infinite. The proof is given in
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Appendix B. The result turns out to be extremely useful in conjunction with Itô’s
formula.

Lemma 2.1. Let dXt = ∑g(k)t dB(k)
t + ftdt be a semimartingale. Then it is a local

martingale if and only if almost surely ft = 0 for almost all t.

Example 2.4. Let F : R→ R be smooth, λ ∈ R\{0} and suppose that F(Bt)eλ t is
a martingale. By Itô’s formula

d
(

F(Bt)eλ t
)
= F ′(Bt)eλ tdBt +

(
λF(Bt)+

1
2

F ′′(Bt)

)
eλ tdt.

By Lemma 2.1, it holds that λF(Bt)+
1
2 F ′′(Bt) = 0 for all t. This is possible only if

F satisfies λF(x)+ 1
2 F ′′(x) = 0 for all x. Thus

F(x) =C1 exp
(√
−2λ t

)
+C2 exp

(
−
√
−2λ t

)
, when λ < 0, and

F(x) =C1 sin(
√

2λ t)+C2 cos(
√

2λ t), when λ > 0.

Here C1,C2 ∈ R are constants.

2.4.2 Time-changes

2.4.2.1 Time-change of local martingales to Brownian motion

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

0 0.2 0.4
-0.5

0

0.5

1

1.5

Fig. 2.2 On the left, an instance of Brownian motion (Bt)t∈R≥0 is plotted with dots and the cor-
responding instance of (Xt)t∈R≥0 = ((1/2)(B2

t − t))t∈R≥0 with a solid line. On the right, the time
change of (Xt)t∈R≥0 plotted with a solid line and the change of time, which is the inverse of the
map t 7→ 〈X〉t , is plotted with dots.
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As usual, let (Ω ,F ,P) be a probability space with a filtration (Ft)t∈R≥0 and
let (Bt)t∈R≥0 be a standard one-dimensional Brownian motion with respect to
(Ft)t∈R≥0 . Let’s start this section by making the following definition.

Definition 2.17. If τ is a stopping time with respect to (Ft)t∈R≥0 , define the stop-
ping time σ -algebra as

Fτ = {A ∈F : A∩{τ ≤ t} ∈Ft for all t ∈ R≥0}

Remark 2.14. If s∈R≥0 is a constant and τ = s almost surely, then it’s easy to check
that Fτ = Fs. So the notation Fτ and the concept of stopping time σ -algebra is
consistent with the earlier definitions.

In the same way, as Ft can be thought as the information available at time t, a
stopping time σ -algebra Fτ can be thought as the information available at a random
time τ . The main reason to introduce the stopping time σ -algebra is time changes
and analysis of martingales under time changes. See Appendix A for the optional
stopping theorem which a result that that extends the martingale property from non-
random time instances to stopping times.

The following theorem is an application of Itô’s formula. It is a special case
of more general result that any continuous local martingale is a time-change of a
Brownian motion. The proof of the general result would follow the same lines if we
had established the theory of the stochastic integral with respect to local martingales
and we had corresponding Itô’s formula available.

Theorem 2.9. Let (Xt)t∈R≥0 be a local martingale defined by

Xt =
m

∑
k=1

∫ t

0
g(k)s dB(k)

s

where g(k)t ∈L 2
loc. Let (σr)r∈R≥0 be the set of stopping times

σr = inf{t ≥ 0 : 〈X〉t ≥ r}

where

〈X〉t =
m

∑
k=1

∫ t

0

(
g(k)s

)2
ds

is the quadratic variation process as before. Assume that almost surely 〈X〉t →∞ as
t→ ∞. Then the process (Yt)t∈R≥0 defined by

Yt = Xσt

is a standard one-dimensional Brownian motion with respect to the filtration (Fσt )t∈R≥0 .

Proof. Since 〈X〉t → ∞ as t → ∞, each σr is almost surely finite. By the continuity
of the mapping t 7→ 〈X〉t , we have that 〈X〉σr = r.

Let
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Mt = exp
(

iθXt +
θ 2

2
〈X〉t

)
.

By Itô’s formula (Mt)t∈R≥0 is a continuous local martingale, see also Example 2.4.
Note that (Mt)t∈R≥0 is a complex valued process, but this causes no problems: we
can apply Itô’s formula separately for its real and imaginary parts. The statement
that it is a local martingale means that both its real and imaginary parts are local
martingales. Since Mσr

t = Mt∧σr is bounded, (Mσr
t )t∈R≥0 is a martingale. Namely,

if τn is the localizing sequence of (Mt)t∈R≥0 , then (Mσr∧τn
t )t∈R≥0 is a martingale.

Hence by boundedness of (Mσr
t )t∈R≥0 and by the fact that τn↗ ∞ almost surely as

n→ ∞,
E[ Mσr∧τn

t︸ ︷︷ ︸
→Mσr

t in L1

|Fs] = Mσr∧τn
s︸ ︷︷ ︸

→Mσr
s in L1, as n→∞

and therefore by properties of conditional expected value, see Appendix A,

E[Mσr
t |Fs] = Mσr

s .

Thus (Mσr
t )t∈R≥0 is a continuous bounded martingale.

Next we apply the optional stopping theorem for stopping times σs ≤ σr, where
0≤ s≤ r, to show that

E[Mσr |Fσs ] = Mσs .

This implies that for any 0≤ s≤ r and for any θ ∈ R,

E [exp(iθ(Xσr −Xσs)) |Fσs ] = exp
(
−θ 2

2
(r− s)

)
.

The right-hand side of this equation is the characteristic function of a normal random
variable with mean 0 and variance r−s. The left-hand side is a conditional version of
characteristic function of Xσr−Xσs . That characteristic function is now constant as a
Fσs -measurable random variable. Therefore the fact that the characteristic function
determines the distribution uniquely shows that Xσr −Xσs is independent from Fσs

and that Xσr −Xσs is normally distributed with mean 0 and variance r− s.5 ut

Example 2.5. Let us continue the setup of Example 2.3. Let (Wt)t∈R≥0 be a process

defined by W0 and dWt = ∑
n
k=1(B

(k)
t /Yt)dB(k)

t , where Yt = F(B(1)
t , . . . ,B(n)

t ). Then

〈W 〉t =
n

∑
k=1

∫ t

0

(B(k)
s )2

Y 2
s

ds = t.

5 If E[exp(iθ1X)|G ] = ψ(θ1) is a constant as a function of ω ∈ Ω , then for any
G -measurable random variable Z, it holds that φ(X ,Z)(θ1,θ2) = E[exp(iθ1X + iθ2Z)] =
E[exp(iθ2Z)E[exp(iθ1X)|G ]] = ψ(θ1)φZ(θ2) by properties of conditional expected value. Here
φθ = E[exp(iθ ·Y )], θ ∈ Rn is the characteristic function of a Rn-valued random variable Y . Thus
by the uniqueness theorem of the characteristic function, it follows that X and Z are independent
and that the law of X is the unique probability measure on R such that φX = ψ . Since this holds in
particular for any random variable Z = 1E , E ∈ G , it follows that X is independent from G .
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By Theorem 2.9, (Wt)t∈R≥0 is a (Ft)t∈R≥0 -Brownian motion.

2.4.2.2 Time-change of semimartingales

The next result gives a general form of a time-change for semimartingales. The
proof is left as an exercise.

Proposition 2.6. Let at(ω) be a continuous, positive, adapted process. Define a ran-
dom time change by setting:

S(t,ω) =
∫ t

0
ar(ω)2 dr, σ(s,ω) = inf{t ∈ R≥0 : S(t,ω)≥ s}

Let (B̃s)s∈R≥0 be the process defined by

B̃s(ω) =
∫

σ(s)

0
ar dBr(ω).

Then (B̃s)s∈R≥0 is a standard one-dimensional Brownian motion with respect to
(Fσ(s))s∈R≥0 , and for any continuous, adapted process vt(ω) the following time-
change formula holds ∫ s

0
vσ(q) dB̃q =

∫
σ(s)

0
vrar dBr.

Moreover if Xt is a semimartingale dXt = utdt+vtdBt then the process (X̃s)s∈R≥0 de-
fined by X̃s = Xσ(s) is a semimartingale with respect to (Fσ(s))s∈R≥0 and (B̃s)s∈R≥0
and satisfies

dX̃s =
uσ(s)

a2
σ(s)

ds+
vσ(s)

aσ(s)
dB̃s.

2.4.3 Stochastic differential equations

We present here the rudiments of stochastic differential equations for single variable.
The multidimensional version, which is a straightforward extension, is presented in
Appendix B. For one-dimensional stochastic differential equations, one can obtain
results under weaker conditions, see, for instance, [6] Section IX.3.

Let (Xt)t∈[0,T ] be an R-valued continuous stochastic process and let (Bt)t∈R≥0 be
a standard one-dimensional Brownian motion. We say that Xt satisfies the stochastic
differential equation (SDE)

dXt = F(t,Xt)dt +G(t,Xt)dBt (2.11)

with initial value X0 = Z if for each t ∈ [0,T ]
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Xt = Z +
∫ t

0
F(s,Xs)ds+

∫ t

0
G(s,Xs)dBs.

If the process can be constructed in a given probability space with a given filtration
and Brownian motion, then (Xt)t∈[0,T ] is called strong solution of the SDE.

Theorem 2.10. Let (Bt)t∈R≥0 be one-dimensional Brownian motion and let

F :[0,T ]×R→ R
G :[0,T ]×R→ R

be measurable maps. Let Z be R-valued square integrable random variable which
is independent from σ(Bt , t ∈ R≥0). Suppose that

|F(t,x)|+ |G(t,x)| ≤C(1+ |x|)
|F(t,x)−F(t,y)|+ |G(t,x)−G(t,y)| ≤ D |x− y|.

Then there exist a unique continuous solution (Xt)t∈[0,T ] to the stochastic differ-
ential equation (2.11) with initial value X0 = Z with the property that Xt is adapted
to the filtration F

(B,Z)
t generated by Z and Bs, s ∈ [0, t]. Furthermore

E

[∫ T

0
|Xt |2dt

]
< ∞.

The proof of the theorem is very similar to the proofs of existence and unique-
ness of solutions of ordinary differential equations and is based on Picard–Lindelöf
iteration. We leave the details to the reader.

Example 2.6. Let us continue Examples 2.3 and 2.5. The solution of the SDE

dXt = dBt +
δ −1
2Xt

dt,

X0 = x is called a Bessel process of dimension δ ∈ R sent from x. In Examples 2.3
and 2.5 we saw that the norm of n-dimensional Brownian motion is a n-dimensional
Bessel process. We can use Theorem 2.10 with Proposition 2.5 to show that the solu-
tion exists and is unique for all δ ∈R up to the time τ = inf{t ∈ R≥0 : infs∈[0,t) Xs =
0} which is the hitting time of 0. Using other methods, we could define it beyond
the hitting of 0 for the parameter values δ > 0.

Remark 2.15. In the time-homogeneous case, F(t,x) = F(x) and G(t,x) = G(x),
these solutions Xt are called diffusions. Another viewpoint to diffusions is that it is
a family of processes with one element for each starting point x ∈ R.
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(a) A sample of complex Brownian motion
stopped at its exit time from the disc.

(b) Conformal image of the Brownian sample
under a map that takes the disc onto a sector.

Fig. 2.3 Illustration of conformal invariance of Brownian motion. The colors indicate time. We
notice that the appearances of the paths are similar in both pictures except that the time is changed
by a local factor when we move from the first picture to the second one.

2.5 Conformal invariance of two-dimensional Brownian motion

As usual complex number z is represented in terms of its real and imaginary parts as
z = x+ iy, similarly complex valued function of a complex variable is divided into
its real and imaginary parts as f (z) = u(z)+ iv(z). Define as usual the following
partial differential operators

∂ =
1
2
(∂x− i∂y), ∂ =

1
2
(∂x + i∂y).

Let U be an open set in the complex plane C and let z0 ∈U . The starting point of
complex analysis is that the following statements about a function f : U → C are
equivalent:

• The function f is holomorphic near z0: the complex derivative

f ′(z) = lim
h→0

f (z+h)− f (z)
h

exists and is continuous in a neighborhood of z0. This is equivalent to that the
statement that f has continuous partial derivatives ∂x f , ∂y f and satisfies ∂ f (z) =
0 in a neighborhood of z0. The complex derivative f ′ satisfies f ′(z) = ∂ f (z) =
∂x f (z) =−i∂y f (z).

• The real and imaginary parts of f satisfies Cauchy–Riemann equations near z0:

∂xu = ∂yv, ∂xv =−∂yu
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• The function f is (complex) analytic at z0: f (z) = ∑
∞
n=0 cn(z− z0)

n which con-
verges absolutely when |z− z0| ≤ r for some r > 0.

Remember that u and v are harmonic: ∆u = 0 = ∆v.6

We conclude this chapter by showing that the complex Brownian motion is con-
formally invariant (up to a time-change). This justifies more or less all the time that
we invested on the technical steps in this chapter and also works as motivation for
the treatise of conformally invariant scaling limit in later chapters. Define a complex
Brownian motion send from z0 ∈ C as

Bt = BC
t = z0 +B(1)

t + iB(2)
t

Theorem 2.11. Let U ⊂ C be a domain (non-empty connected open set) and let
f : U → C be analytic. Let z0 ∈U and let Bt be a complex Brownian motion send
from z0 ∈ C. Let τ = inf{t ≥ 0 : Bt /∈U}. Let Zt = f (Bσ(t)) for 0≤ t < S(τ) where
σ(t) = S−1(t) and

S(t) =
∫ t

0
| f ′(Bs)|2ds

for 0≤ 0 < τ . Then Zt is a complex Brownian motion send from f (z0) and stopped
at S(τ).

Proof. As above write f = u+ i v. Define

Xt = u(Bt), Yt = v(Bt)

Since u and v are harmonic and satisfy the Cauchy–Riemann equations,

dXt = u1(Bt)dB(1)
t +u2(Bt)dB(2)

t

dYt =−u2(Bt)dB(1)
t +u1(Bt)dB(2)

t

by Itô’s formula, where u1 = ∂xu and u2 = ∂yu are the partial derivatives of u. The
dt-terms vanished by ∆u = 0 = ∆v. Therefore (Xt)t∈R+ and (Yt)t∈R+ are local mar-
tingales.

Now 〈X ,Y 〉t = 0 and

〈X〉t = 〈Y 〉t =
∫ t

0
u1(Bs)

2 +u2(Bs)
2 ds =

∫ t

0
| f ′(Bs)|2ds.

Here we used the fact that f ′(z) = u1(z)− iu2(z). A slight modification of the proof
of Theorem 2.9 shows that for any θ1,θ2 ∈ R

exp
(

iθ1Xt +
θ 2

1
2
〈X〉t

)
exp
(

iθ2Yt +
θ 2

2
2
〈Y 〉t

)

6 By the Cauchy–Riemann equations, uxx +uyy = vxy− vxy = 0 and similarly for v.
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is a local martingale, and consequently, (Xσt )t∈R+ and (Yσt )t∈R+ are independent
Brownian motions. ut

Remark 2.16. In the previous proof, it was crucial that (Xt)t∈R+ and (Yt)t∈R+ had
the same quadratic variation. There is no general time-change result for multidi-
mensional continuous local martingales of the form of Theorem 2.9.
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