
Appendix B
Supplementary material on stochastic calculus

B.1 Usual conditions

Let’s comment on some assumptions usually assumed in textbooks on stochastic
analysis. If we are given a probability space (Ω ,F ′,P) and a filtration (F ′

t )t∈R,
then we can complete F ′ by including all null sets and use the usual augmentation
of (F ′

t )t∈R which is defined by including all the null sets in the filtration and making
the filtration right continuous:

N = {A⊂Ω : A⊂ E for some E ∈F s.t. P[E] = 0}
F = σ(F ′∪N )

F t = σ(F ′
t ∪N )

Ft =
⋂
s>t

F s.

The filtration (Ft)t∈R+ constructed in this way is right-continuous in the sense that
Ft =

⋂
s>t Fs.

We will assume that F is complete and that (Ft)t∈R+ satisfies the usual condi-
tions, i.e., it is complete and right-continuous. The right-continuity of the filtration
affects the set of stopping times. Here is an example result.

Lemma B.1. If (Ft)t∈R+ is right-continuous and (Xt)t∈R+ is a continuous, adapted
Rd-valued process, then the hitting-time of a open or closed set H ⊂ Rd

τH = inf{t ∈ R+ : Xt ∈ H}

is a stopping time.
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B.2 Strong Markov property

For the sake of completeness, let’s state the following property of Brownian motion
which extends the Markov property of Brownian motion (the property that for each
s ∈R+, the process Yt = Bt+s−Bs is a standard Brownian motion independent from
Fs).

Theorem B.1 (Strong Markov property). For any stopping time τ which is almost
surely finite, the process (Yt)t∈R+ defined by

Yt = Bτ+t −Bτ

is a standard Brownian motion independent of Fτ .

Remark B.1. Note that in the independence property, an “infinitesimal peek to the
future” is allowed because the filtration (Ft)t∈R+ is right-continuous and hence
Fτ =

⋂
h>0 Fτ+h.

B.3 Lemma on approximation by simple processes in L 2

Proposition B.1. For each f ∈L 2, there exist a sequence of bounded, simple fn ∈
L 2 such that

E

[∫ T

0
( f (t, ·)− fn(t, ·))2dt

]
→ 0,

i.e. fn converges to f in L2(dt×dP).

Remark B.2. The first and last of the three steps of the proof below are the most
important, because we will mostly only consider continuous processes as integrands.

Proof (a sketch). Bounded continuous f ∈ L 2: Take any sequence of partitions
πn such that mesh(πn)→ 0 as n→ ∞ and define a sequence of bounded, simple
processes fn ∈L 2 as

fn(t,ω) =
m(π)−1

∑
k=0

f (tk,ω)1[tk,tk+1)(t)

when πn is 0 = t0 < t1 < .. . < tm(πn) = T . Then

sup
t∈[0,T ]

| f (t,ω)− fn(t,ω)| ≤ sup
s,t∈[0,T ] : |s−t|≤mesh(πn)

| f (t,ω)− f (s,ω)|

By continuity the right-hand side tends to zero almost surely. Since | f | ≤C < ∞ for
some constant C, we can apply the dominated convergence theorem (DCT) to show
that the right-hand side goes to zero also in L2(dP). Hence
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E

[∫ T

0
| f (t, ·)− fn(t, ·)|2dt

]
≤ E

[
T sup

t∈[0,T ]
| f (t, ·)− fn(t, ·)|2

]
→ 0.

Bounded g∈L 2: Take a sequence of continuous functions ψn : R→R such that
(i) ψn ≥ 0, (ii) ψn(x) = 0 when x /∈ (−1/n,0) and (iii)

∫
∞

−∞
ψn(x) = 1. Define a

sequence of bounded, continuous processes gn ∈L 2 as

gn(t,ω) =
∫ t

0
ψn(s− t)g(s,ω)ds

The sequence (ψn) forms an approximate identity and by standard properties of such
sequences, ∫ T

0
(gn(t,ω)−g(t,ω))2dt→ 0.

We omit the details of the measurability requirements of L 2. By DCT, gn → g in
L2(dt×dP).

General h ∈L 2: Define a sequence of bounded processes hn ∈L 2 as

hn(t,ω) =


−n if h(t,ω)<−n
h(t,ω) if h(t,ω) ∈ [−n,n]
n if h(t,ω)> n

Then by DCT, hn→ h in L2(dt×dP). ut

B.4 Lemma on pathwise interpretation of stochastic integral

We prove next an “obvious” result which allows a kind of a pathwise interpretation
of the Itô integral: if two integrands have the same paths up to a stopping time, then
the integrals also agree up to that stopping time.

Proposition B.2. If τ is a stopping time and f ∈ L 2 and g ∈ L 2 processes such
that f (t,ω) = g(t,ω) for any (t,ω) such that t ≤ τ(ω), then for almost all ω∫ t

0
f dBs(ω) =

∫ t

0
gdBs(ω)

for all t ≤ τ(ω).

Proof. Let Xt =
∫ t

0 f dBs. It is clearly enough to prove that if τ is a stopping time
and f (t,ω) = 0 for t ≤ τ(ω), then for almost all ω , Xt(ω) = 0 for all t ≤ τ(ω).

Assume for a moment that | f | ≤ K. Pick a sequence of simple fn ∈L 2 converg-
ing to f in L2(dt×dP). We can assume that | fn| ≤ K. Write
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fn(t,ω) =
mn−1

∑
k=0

a(n)k (ω)1[
t(n)k ,t(n)k+1

)(t)
Since it is possible that fn(t,ω) 6= 0 for some (t,ω) satisfying t ≤ τ(ω), we modify
fn by setting

f̃n(t,ω) =
mn−1

∑
k=0

a(n)k (ω)1{
τ<t(n)k

}(ω)1[
t(n)k ,t(n)k+1

)(t).
Notice that f̃n ∈L 2 (here we need that τ is a stopping time). Now since fn1[τ,∞)→
f1[τ,∞) = f in L2(dt× dP), to check that f̃n → f in L2(dt× dP) we have to show
that f̃n− fn1[τ,∞)→ 0 in L2(dt×dP).

Now

∣∣ f̃n(t, ·)− fn(t, ·)1[τ,∞)(t)
∣∣≤K

m−1

∑
k=0

∣∣∣∣1{τ<t(n)k

}−1{τ≤t}

∣∣∣∣1[t(n)k ,t(n)k+1

)(t)
≤K

m−1

∑
k=0

1{
t(n)k ≤τ<t(n)k+1

}1[
t(n)k ,t(n)k+1

)(t)
and therefore

E

[∫ T

0

(
f̃n− fn1[τ,∞)

)2 dt
]
≤ K2

m−1

∑
k=0

P
[
t(n)k ≤ τ < t(n)k+1

]∫ T

0
1[

t(n)k ,t(n)k+1

)(t)dt

≤ K2 mesh(πn)

where πn = {t(n)0 , . . . , t(n)mn }. We can assume that mesh(πn)→ 0 by adding points to
the partition if necessary. Since f̃n → f in L2(dt × dP) and

∫ t
0 f̃n(s, ·)dBs = 0 for

t ≤ τ , and since by the proof of Theorem 2.4 there is a subsequence of
∫ t

0 f̃n(s, ·)dBs
that converges almost surely uniformly on [0,T ] for T > 0, Xt(ω) = 0 almost surely
for any t ≤ τ . ut

B.5 Itô’s formula for Brownian motion

Theorem B.2 (Itô’s formula for a Brownian motion). Let F : R+×R→ R be a
continuous function such that Ḟ ,F ′,F ′′ exist and are continuous, where

Ḟ(t,x) =
∂F
∂ t

(t,x), F ′(t,x) =
∂F
∂x

(t,x) and F ′′(t,x) =
∂ 2F
∂x2 (t,x).

Then almost surely

F(t,Bt) = F(0,B0)+
∫ t

0
Ḟ(s,Bs)ds+

∫ t

0
F ′(s,Bs)dBs +

1
2

∫ t

0
F ′′(s,Bs)ds (B.1)
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for any t ∈ R+. For the previous equation we will use the shorthand notation

dF(t,Bt) = Ḟ(t,Bt)dt +F ′(t,Bt)dBt +
1
2

F ′′(t,Bt)dt.

Proof. We’ll prove this claim in the case when Ḟ ,F ′,F ′′ are compactly supported.
The general case follows from this when we set Fn = F hn where 0 ≤ hn ≤ 1 is
a sequence of smooth functions such that hn = 1 in [0,n]× [−n,n] and 0 in the
complement of [0,n+1]× [−n−1,n+1].

Take a partition π of [0, t] and write a telescoping sum

F(t,Bt)−F(0,B0) =
m(π)−1

∑
k=0

(F(tk+1,Btk+1)−F(tk,Btk)).

By the mean value theorem

F(tk+1,Btk+1)−F(tk,Btk) = [F(tk+1,Btk+1)−F(tk,Btk+1)]+ [F(tk,Btk+1)−F(tk,Btk)]

=[F(tk+1,Btk+1)−F(tk,Btk+1)]︸ ︷︷ ︸
=ak

+F ′(tk,Btk)(Btk+1 −Btk)︸ ︷︷ ︸
=bk

+
1
2

F ′′(tk,ηk)(Btk+1 −Btk)
2︸ ︷︷ ︸

=ck

where ηk is a Ftk+1 -measurable random variable that lies on the interval between
Btk and Btk+1 . Take a sequence of partitions πn such that mesh(πn)→ 0 as n→ ∞.
The claim is that the sums ∑ak, ∑bk and ∑ck will converge to each of the three
integrals in (B.1), respectively. The convergence will be almost sure along suitable
subsequences of πn.

Define for any g : R+×R→R the following quantities measuring sizes of oscil-
lations

O(B)(δ ) = sup{|Bs−Bs′ | : 0≤ s,s′ ≤ t s.t. |s− s′| ≤ δ}
Og(δ ,δ

′) = sup{|g(s,x)−g(s′,x′)| : 0≤ s,s′ ≤ t s.t. |s− s′| ≤ δ and x,x′ ∈ R s.t. |x− x′| ≤ δ
′}

Og,B(δ ) = Og
(
δ ,O(B)(δ )

)
.

Note first that by the mean value theorem

F(tk+1,Btk+1)−F(tk,Btk+1) = Ḟ(ρk,Btk+1)(tk+1− tk)

where ρk ∈ (tk, tk+1) is a random variable. Now∣∣Ḟ(ρk,Btk+1)− Ḟ(tk,Btk)
∣∣≤ OḞ ,B(mesh(πn))

and therefore∣∣∣∣∣∑k
Ḟ(ρk,Btk+1)(tk+1− tk)−∑

k
Ḟ(tk,Btk)(tk+1− tk)

∣∣∣∣∣≤ t OḞ ,B(mesh(πn))
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which goes to zero almost surely as mesh(πn)→ 0. By almost sure continuity of
t 7→ Ḟ(t,Bt),

∑
k

Ḟ(tk,Btk)(tk+1− tk)→
∫ t

0
Ḟ(s,Bs)ds

almost surely as mesh(πn)→ 0 and hence

∑
k

Ḟ(ρk,Btk+1)(tk+1− tk)→
∫ t

0
Ḟ(s,Bs)ds

almost surely as mesh(πn)→ 0 and we have shown the almost sure convergence of
∑ak.

We know from the definition of Itô integral that

∑F ′(tk,Btk)(Btk+1 −Btk)→
∫ t

0
F ′(s,Bs)dBs (B.2)

in L2. Choose a subsequence of πn (denoted for simplicity still by πn) such that this
convergence is almost sure. This gives the claim for ∑bk.

Finally,∣∣∑(F ′′(tk,ηk)−F ′′(tk,Btk)) · (Btk+1 −Btk)
2∣∣≤ OF ′′,B(mesh(πn))∑(Btk+1 −Btk)

2

Take a subsequence such that ∑(Btk+1−Btk)
2 goes to t almost surely as mesh(πn)→

0. Then the right-hand side goes to zero almost surely. Now the same calculation as
for the quadratic variation of Brownian motion shows that

E
((

∑F ′′(tk,Btk) · ((Btk+1 −Btk)
2− (tk+1− tk))

)2
)

= ∑E
(
F ′′(tk,Btk)

2 · ((Btk+1 −Btk)
2− (tk+1− tk))2)

≤ ‖F ′′‖2
∞ ∑E

(
((Btk+1 −Btk)

2− (tk+1− tk))2)
= 2‖F ′′‖2

∞ ∑(tk+1− tk)2

which goes to zero. Now take yet another subsequence such that

∑F ′′(tk,Btk) · ((Btk+1 −Btk)
2− (tk+1− tk))→ 0

almost surely. Then on the event that t 7→ F ′′(t,Bt) is continuous,

∑F ′′(tk,Btk)((Btk+1 −Btk)
2→

∫ t

0
F ′′(s,Bs)ds

almost surely. Hence along the chosen subsequence

∑F ′′(tk,ηk)(Btk+1 −Btk)
2→

∫ t

0
F ′′(s,Bs)ds (B.3)

almost surely giving the claim for ∑ck.
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Now we have shown that for fixed t, Itô’s formula (B.1) holds almost surely.
Therefore it holds almost surely for all rational t. Finally, by continuity of both
sides in t, it holds almost surely for all t. ut

B.6 Quadratic variation of a stochastic integral

Theorem B.3. For any f ∈ L 2, the Itô integral Xt =
∫ t

0 f dBs has finite quadratic
variation and

V (2)
X (t) = 〈X〉t

almost surely for any t.

Proof. Assume first that f ∈L 2 is such that the Itô integral Xt =
∫ t

0 f dBs and the
quadratic variation 〈X〉t are bounded processes, that is, there exists a constant K
such that for almost all ω and for all t, |Xt(ω)| ≤ K and 〈X〉t ≤ K.

Let t > 0 and π = {0 = t0 < t1 < .. . < tm = t}. Define

∆k = (Xtk+1 −Xtk)
2−〈X〉tk+1 + 〈X〉tk

and note that
m−1

∑
k=0

∆k =
m−1

∑
k=0

(Xtk+1 −Xtk)
2−〈X〉t .

Notice also that for any 0 ≤ u ≤ tk, E[∆k|Fu] = 0 by the martingale increment or-
thogonality. Therefore

E

(m−1

∑
k=0

∆k

)2
=

m−1

∑
k=0

E
[
∆

2
k
]
.

By the inequality (a+b)2 ≤ 2(a2 +b2),

E

(m−1

∑
k=0

∆k

)2
≤2

m−1

∑
k=0

E
(
(Xtk+1 −Xtk)

4)
+2E[〈X〉t sup{|〈X〉s−〈X〉s′ | : 0≤ s,s′ ≤ t, |s− s′| ≤mesh(π)}].

The second term goes to zero as mesh(π)→ 0 by boundedness and continuity of
〈X〉t . So it remains to show that

m−1

∑
k=0

E
[
(Xtk+1 −Xtk)

4]→ 0

as mesh(π)→ 0.
We will first show that



8 B Supplementary material on stochastic calculus

E

(m−1

∑
k=0

(Xtk+1 −Xtk)
2

)2
≤ 6K4 (B.4)

By using the martingale property of (Xt)t∈R+

m−1

∑
k= j

E
[
(Xtk+1 −Xtk)

2∣∣Ft j

]
=

m−1

∑
k=0

E
[

X2
tk+1
−X2

tk

∣∣∣Ft j

]
≤ E

[
X2

tm

∣∣Ft j

]
≤ K2

and therefore

m−1

∑
j=0

m−1

∑
k= j+1

E
[
(Xt j+1 −X jk)

2 (Xtk+1 −Xtk)
2
]

=
m−1

∑
j=0

E

[
(Xt j+1 −X jk)

2
m−1

∑
k= j+1

E
[
(Xtk+1 −Xtk)

2∣∣Ft j+1

]]

≤ K2
m−1

∑
j=0

E
[
(Xt j+1 −X jk)

2
]
≤ K4

We also have

m−1

∑
k=0

E
[
(Xtk+1 −Xtk)

4]≤ 4K2
m−1

∑
k=0

E
[
(Xtk+1 −Xtk)

2]≤ 4K4.

The inequality (B.4) follows directly from the last two inequalities.
Now by the Cauchy–Schwarz inequality

E

[
m−1

∑
k=0

(Xtk+1 −Xtk)
4

]

≤E

[
sup
{
|Xs−Xs′ |2 : 0≤ s,s′ ≤ t, |s− s′| ≤mesh(π))2} m−1

∑
k=0

(Xtk+1 −Xtk)
2

]

≤

E[sup
{
|Xs−Xs′ |2 : 0≤ s,s′ ≤ t, |s− s′| ≤mesh(π))2}2

]
E

(m−1

∑
k=0

(Xtk+1 −Xtk)
2

)2
 1

2

And the right-hand side goes to zero by continuity of Xt and by the estimate (B.4).
We have now show that when Xt and 〈X〉t are bounded processes then the

quadratic variation exists and V (2)
X (s) = 〈X〉s. To complete the proof for a general

f ∈L 2, let
τn = inf{t ≥ 0 : |Xt | ≥ n or 〈X〉t ≥ n}

and use the above argument for fn = f1[0,τn] and X (n)
t =

∫ t
0 fn(s, ·)dBs. Notice that

X (n)
t = Xτn

t and that τn↗ ∞ almost surely. The claim follows from them. ut
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B.7 When is a semimartingale a martingale?

Lemma B.2. Let dXt = ∑g(k)t dB(k)
t + ftdt be a semimartingale. Then it is a local

martingale if and only if almost surely ft = 0 for almost all t.

Proof. Suppose that (Xt)t∈R≥0 is a local martingale. Let (Xt)t∈R≥0 be a semimartin-

gale such that M0 = 0 and dMt = dXt−∑g(k)t dB(k)
t = ftdt. Then (Mt)t∈R≥0 is a local

martingale and Mt =
∫ t

0 fsds.
We can localize (Mt)t∈R≥0 and assume without a loss of generality that for some

K > 0, it holds that
∫

∞

0 | ft |dt ≤ K almost surely. Then (Mt)t∈R≥0 is a bounded mar-
tingale. Write for 0 ≤ s < t using the properties of conditional expected value and
martingale property

E[(Mt −Ms)
2|Ft ] = E[M2

t |Fs]−2MsE[Mt |Fs]+M2
s

= E[M2
t |Fs]−M2

s = E[M2
t −M2

s |Fs].

This relation is an instance of the “orthogonality of martingale increments.”
Therefore for any 0 = t0 < t1 < .. . < tn = t it holds that

E[M2
t ] =

n−1

∑
k=0

E[(Mtk+1 −Mtk)
2] =≤ KE[max

k
|Mtk+1 −Mtk |]. (B.5)

Since ft(ω) ∈ L1 for each ω , maxk |Mtk+1 −Mtk | tends to zero pointwise in ω as
maxk |tk+1− tk| tends to zero. Since |Mt | ≤ K, the right hand-side of (B.5) tends
to zero by the dominated convergence theorem as maxk |tk+1 − tk| tends to zero.
Therefore it follows that E[M2

t ] = 0 for all t.
By the above argument almost surely Mt = 0 for all rational t, and by continuity

finally, almost surely Mt = 0 for all t, whence the claim follows. ut

B.8 Stochastic differential equations

Let Xt be an Rn valued continuous stochastic process and let Bt be a standard m-
dimensional Brownian motion. We say that Xt satisfies the stochastic differential
equation (SDE)

dXt = F(t,Xt)dt +G(t,Xt)dBt

with initial condition X0 = Z if for each t

Xt = Z +
∫ t

0
F(s,Xs)ds+

∫ t

0
G(s,Xs)dBs

Here G(s,Xs)dBs is understood as a matrix product so that the i’th component, 1≤
i≤ n, is ∑

m
j=1 G(i, j)(s,Xs)dB( j)

s .
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Theorem B.4. Let Bt be m-dimensional Brownian motion and let

F :[0,T ]×Rn→ Rn

G :[0,T ]×Rn→ Rn×m

be measurable maps. Let Z be Rn-valued square integrable random variable which
is independent from σ(Bt , t ∈ R+). Suppose that

|F(t,x)|+ |G(t,x)| ≤C(1+ |x|)
|F(t,x)−F(t,y)|+ |G(t,x)−G(t,y)| ≤ D |x− y|

where for any matrix A, |A|=
√

∑i, j Ai, j.
Then there exist a unique continuous solution (Xt)t∈[0,T ] to the stochastic differ-

ential equation

X0 = Z, dXt = F(t,Xt)dt +G(t,Xt)dBt , t ∈ [0,T ],

with the property that Xt is adapted to the filtration F
(B,Z)
t generated by Z and Bs,

s ∈ [0, t]. Furthermore

E

[∫ T

0
|Xt |2dt

]
< ∞.

Remark B.3. In the time-homogeneous case, F(t,x) = F(x) and G(t,x) = G(x),
these solutions Xt are called diffusions. Another viewpoint to diffusions is that it is a
family of processes with one element for each starting point x ∈Rn. The uniqueness
of the solution together with the strong Markov property of Brownian motion imply
that diffusions have the following strong Markov property: Xτ+t conditioned on Fτ

is distributed as an independent copy of the diffusion X̃t send from Xτ .
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