Appendix A Supplementary material on probability theory

A.1 Basics of probability theory

As the reader of this book very well knows, probability is an assignment of a number between zero and one to an event. This number tells how likely the event is — if it is nearly zero, the event is very unlikely, and if it is almost one, the event is very likely to occur. Mathematically probability is a *measure* defined on the collection of events. In this chapter we list the required results of *measure theory* and *probability theory*.

A.1.1 Measure theory

The basic concepts of measure theory that reader should be aware of are

- (X, \mathscr{A}) a measurable space: X is set, \mathscr{A} its σ -algebra
- measurable function f, (positive) measure μ , integral $\int f d\mu$
- Lebesgue measure on \mathbb{R}^d
- $L^p(\mu)$ space: Measurable f is in $L^p(\mu)$ if $\int |f|^p d\mu < \infty$. Notation: $||f||_p = (\int |f|^p d\mu)^{1/p}$.
- Product measures: If (X, A, μ) and (Y, B, ν) are measure spaces, then their product space is (X × Y, A × B, μ × ν) where X × Y is Cartesian product, A × B the σ-algebra generated by A × B, A ∈ A and B ∈ B, and μ × ν the unique extension of A × B ↦ μ(A)ν(B). (Here we have to assume that both measures μ and ν are σ-finite in the sense that X can be written as X = ⋃_{k=1}[∞] X_k where X_k a measurable sets with finite μ-measure and the same holds for Y and ν.)

Here is a summary of some results of measure theory. For the details and proof see any book on measure theory.

• Monotone convergence theorem: If f_n are measurable functions such that $0 \le f_n \nearrow f$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$

A Supplementary material on probability theory

- Dominated convergence theorem: If *f_n* are measurable functions and *f* = lim_{n→∞} *f_n* exists almost everywhere and ∃*g* ≥ 0 such that |*f_n*| ≤ *g* for all *n* and ∫ *g*dµ < ∞, then ∫ *f* dµ = lim_{n→∞} ∫ *f_n*dµ.
- Fubini's theorem: Assume that μ and ν are σ -finite. Let $f \in \mathscr{A} \times \mathscr{B}$. If $f \ge 0$ or $\int |f| d(\mu \times \nu) < \infty$ then $\int_X (\int_Y f d\nu) d\mu = \int_{X \times Y} f d(\mu \times \nu) = \int_Y (\int_X f d\mu) d\nu$.
- Radon–Nikodym theorem: If v is a σ -finite signed measure and μ is a σ -finite measure on (X, \mathscr{A}) and v is absolutely continuous with respect to μ , then exist $g \in \mathscr{F}$ such that $v(A) = \int_A g \, d\mu$. Here v is absolutely continuous with respect to μ , if v(A) = 0 whenever $\mu(A) = 0$, $A \in \mathscr{F}$. A notation: $f = \frac{dv}{d\mu}$ and it is called Radon–Nikodym derivative.

A notation which sometimes handy: $f \in \mathscr{A}$ where f is a function on X means that f is \mathscr{A} -measurable.

A.1.2 Probability theory

Probability theory is essentially measure theoretical formulation of probability. Therefore the basics of probability are easily accessible to anybody with background in measure theory. Here is a list of basic facts about probability:

- A probability space is a measure space (Ω, F, P) such that P is a probability measure, i.e., P[Ω] = 1. Ω "outcomes", F "events"
- A random variable is a \mathscr{F} -measurable function $X : \Omega \to \mathbb{R}$. *H*-valued random variable is a measurable function $X : \Omega \to H$ (*H* is a measurable space).
- The expected value of X is $E[X] = \int X dP \in [-\infty, \infty]$, which makes sense when $X \ge 0$ or when either $\int X^+ dP < \infty$ or $\int X^- dP < \infty$, where $X = X^+ X^-$ is the decomposition of X into positive and negative part.
- L^p(P) space: ||X||_p = (E[|X|^p])^{1/p} <∞. By Hölder inequality, ||X||_p ≤ ||X||_q for 1 ≤ p ≤ q and hence L^q(P) ⊂ L^p(P) (a fact which isn't necessarily true for general measures).
- Independence: sub- σ -algebras $\mathscr{A}_1, \ldots, \mathscr{A}_n$ of \mathscr{F} are *independent* if

$$\mathsf{P}[A_1 \cap A_2 \cap \ldots \cap A_n] = \mathsf{P}[A_1] \cdot \mathsf{P}[A_2] \cdot \ldots \cdot \mathsf{P}[A_n] \quad \text{for } A_k \in \mathscr{A}_k.$$

Random variables $X_1, X_2, ..., X_n$ are independent if the σ -algebras $\sigma(X_1), \sigma(X_2), ..., \sigma(X_n)$ are independent

$$\Leftrightarrow \mathsf{P}[\{X_1 \in B_1\} \cap \{X_2 \in B_2\} \cap \ldots \cap \{X_n \in B_n\}]$$

= $\mathsf{P}[X_1 \in B_1] \cdot \mathsf{P}[X_2 \in B_2] \cdot \ldots \cdot \mathsf{P}[X_n \in B_n] \text{ for } B_k \in \mathscr{B}_{\mathbb{R}}.$

A couple of useful notations:

- $\mathsf{E}[X;E] = \int_E X d\mathsf{P} = \int \mathbb{1}_E X d\mathsf{P}.$
- A random variable X induces a measure on \mathbb{R} by $\mu_X(B) = \mathsf{P}[X^{-1}(B)]$ where $B \in \mathscr{B}_{\mathbb{R}}$ and $\mathscr{B}_{\mathbb{R}}$ is the Borel σ -algebra on \mathbb{R} . The measure μ_X is called *distribution*

2

A.2 Conditional expected value

(or *law*) of *X*. When *X* and *Y* induce the same measure, we say that *X* and *Y* are equal in distribution and use the notation

 $X \stackrel{\mathrm{d}}{=} Y.$

A.2 Conditional expected value

Definition A.1. Let *X* be a $L^1(\mathsf{P},\mathscr{F})$ random variable and let $\mathscr{G} \subset \mathscr{F}$ be a σ -algebra. The *conditional expected value of X given* \mathscr{G} is defined to be any random variable *Y* such that *Y* is (i) \mathscr{G} -measurable and (ii) for any $E \in \mathscr{G}$

$$\int_E X d\mathsf{P} = \int_E Y d\mathsf{P}.$$

We then use the notation $E[X|\mathscr{G}]$ for the conditional expected value and any such *Y* is called a *version* of $E[X|\mathscr{G}]$.

Proposition A.1. The conditional expected value exists and is unique in the sense that if Y and Y' satisfy (i) and (ii) then Y = Y' almost surely. Also the conditional expected value is integrable.

Proof. Let $G = \{Y \ge 0\}$ which is \mathscr{G} -measurable. Then

$$\mathsf{E}[|Y|] = \int_{G} Y d\mathsf{P} - \int_{G^c} Y d\mathsf{P} = \int_{G} X d\mathsf{P} - \int_{G^c} X d\mathsf{P} \le ||X||_1,$$

where G^c is the complement $\Omega \setminus G$ of G. Therefore $\mathsf{E}[|Y|] < \infty$.

Existence follows from Radon-Nikodym theorem:

$$E \mapsto \int_E X \mathrm{dP}$$

is a signed measure, which is absolutely continuous with respect to P. Then the Radon-Nikodym derivative Y of that measure satisfies the properties of the conditional expected value.

Uniqueness: If *Y* and *Y'* are version of $E[X|\mathscr{G}]$, then let $E = \{Y > Y'\}$. Then if P[E] > 0, $\int_E Y dP > \int_E Y' dP$ which is a contradiction. Hence $P[\{Y = Y'\}] = 1$. \Box

Intuitively $E[X|\mathcal{G}]$ should be thought to the best guess of the value of X given the information contained in \mathcal{G} .

Example A.1. (Perfect information) If X is \mathscr{G} measurable then $\mathsf{E}[X|\mathscr{G}] = X$.

Example A.2. (No information) If X is independent of \mathscr{G} then $\mathsf{E}[X|\mathscr{G}] = \mathsf{E}X$.

Example A.3. (Relation to the usual conditional expected value) Let $\Omega_1, \Omega_2, ...$ be a finite or countably infinite disjoint partition of Ω into \mathscr{F} -measurable sets, each of which has positive probability. If \mathscr{G} is the σ -algebra generated by $\Omega_1, \Omega_2, ...$ then

A Supplementary material on probability theory

$$\mathsf{E}[X|\mathscr{G}] = \frac{\mathsf{E}[X;\Omega_k]}{\mathsf{P}[\Omega_k]} \quad \text{on } \Omega_k$$

Note that $\mathscr{G} = \{\bigcup_{k \in I} \Omega_k : I \subset \mathbb{N}\}.$

We list next some properties of conditional expected value, see Section 5.1 of [1] or Section 9.7 of [3].

Theorem A.1. Let X, Y be $L^1(\mathsf{P},\mathscr{F})$ random variables and $a, b \in \mathbb{R}$ and $\mathscr{G}, \mathscr{G}_1, \mathscr{G}_2 \subset \mathbb{R}$ ${\mathscr F}$ be σ -algebras. Then

- 1. $\mathsf{E}[aX + bY|\mathscr{G}] = a\mathsf{E}[X|\mathscr{G}] + b\mathsf{E}[Y|\mathscr{G}]$
- 2. $E[E[X|\mathscr{G}]] = E[X]$
- 3. $\mathsf{E}[XY|\mathscr{G}] = Y \mathsf{E}[X|\mathscr{G}]$ if Y is \mathscr{G} -measurable and $X \cdot Y$ is $L^1(\mathsf{P},\mathscr{F})$
- 4. (Tower property) $\mathsf{E}[\mathsf{E}[X|\mathscr{G}_2]|\mathscr{G}_1] = \mathsf{E}[X|\mathscr{G}_1]$ if $\mathscr{G}_1 \subset \mathscr{G}_2$
- 5. (Jensen's inequality) If $\phi : \mathbb{R} \to \mathbb{R}$ is convex and $\mathsf{E}[|\phi(X)|] < \infty$ then $\phi(\mathsf{E}[X|\mathscr{G}]) \le$ $\mathsf{E}[\phi(X)|\mathscr{G}].$
- 6. $|\mathsf{E}[X|\mathscr{G}]| \leq \mathsf{E}[|X||\mathscr{G}]$ and when $\mathsf{E}[|X|^2] < \infty$, $|\mathsf{E}[X|\mathscr{G}]|^2 \leq \mathsf{E}[|X|^2|\mathscr{G}]$ 7. If $X_n \to X$ in $L^p(\mathsf{P},\mathscr{F})$ then $\mathsf{E}[X_n|\mathscr{G}] \to \mathsf{E}[X|\mathscr{G}]$ in $L^p(\mathsf{P},\mathscr{F})$.

The following notation is sometimes used: if X and Y are random variables and $\sigma(Y)$ is the σ -algebra generated by Y, then $\mathsf{E}[X|Y]$ means the same as $\mathsf{E}[X|\sigma(Y)]$.

A.3 Martingales

Definition A.2. A *filtration* on (Ω, \mathscr{F}) is a collection $(\mathscr{F}_t)_{t \in \mathbb{R}_{>0}}$ of sub- σ -algebras $\mathscr{F}_t \subset \mathscr{F}$ such that for each $0 \leq s < t$, $\mathscr{F}_s \subset \mathscr{F}_t$.

Recall that a σ -algebra can be thought as information and thus the filtration should be thought as the information that we learn about as t increases. Hence \mathscr{F}_t is the information available at time t. If $\mathscr{F}_t = \sigma(X_s, s \in [0, T])$ where $(X_t)_{t \in \mathbb{R}_{>0}}$ is a stochastic process, then a random variable Y is \mathscr{F}_t measurable if it is a function of the random variables $X_s, s \in [0, T]$.

The class of processes of the following definition is very important.

Definition A.3. A stochastic process $(M_t)_{t \in \mathbb{R}_+}$ is called a (*continuous-time*) martin*gale* with respect to a filtration $(\mathscr{F}_t)_{t \in \mathbb{R}_+}$ if

- 1. M_t is \mathscr{F}_t -measurable for each $t \ge 0$,
- 2. $\mathsf{E}[|M_t|] < \infty$ for each $t \ge 0$,
- 3. $\mathsf{E}[M_t | \mathscr{F}_s] = M_s$ for each $0 \le s < t$.

If the last property is replaced by $E[M_t|\mathscr{F}_s] \ge M_s$, the process is called *submartin*gale, and if the last property is replaced by $\mathsf{E}[M_t|\mathscr{F}_s] \leq M_s$, the process is called supermartingale.

Quite many results for martingales are proved using discrete-time martingales.

A.3 Martingales

Definition A.4. A *discrete-time filtration* on (Ω, \mathscr{F}) is a collection $(\mathscr{F}_t)_{t \in \mathbb{Z}_+}$ of sub- σ -algebras $\mathscr{F}_t \subset \mathscr{F}$ such that for each $t \in \mathbb{Z}_+$, $\mathscr{F}_t \subset \mathscr{F}_{t+1}$.

A stochastic process $(M_t)_{t \in \mathbb{Z}_+}$ is called a *(discrete-time) martingale* with respect to a filtration $(\mathcal{F}_t)_{t \in \mathbb{Z}_+}$ if

- 1. M_t is \mathscr{F}_t -measurable for each $t \in \mathbb{Z}_+$,
- 2. $\mathsf{E}[|M_t|] < \infty$ for each $t \in \mathbb{Z}_+$,
- 3. $\mathsf{E}[M_{t+1}|\mathscr{F}_t] = M_t$ for each $t \in \mathbb{Z}_+$.

If the last property is replaced by $\mathsf{E}(M_{t+1}|\mathscr{F}_t) \ge M_t$, the process is called *submartin-gale*, and if the last property is replaced by $\mathsf{E}(M_{t+1}|\mathscr{F}_t) \le M_t$, the process is called *supermartingale*.

Example A.4. Let $X \in L^1(\mathsf{P},\mathscr{F})$ and let $(\mathscr{F}_t)_{t\geq 0}$ be a filtration. Then $M_t = \mathsf{E}(X|\mathscr{F}_t)$ is a martingale: 1 holds by the definition of conditional expected value, 2 holds by items 2 and 6 of Theorem A.1 and 3 holds by item 4 of Theorem A.1.

Example A.5. Let $X_0, X_1, X_2, ...$ be a sequence of independent integrable random variables such that $\mathsf{E}(X_k) = 0$ for each k and let $\mathscr{F}_n = \sigma(X_0, X_1, X_2, ..., X_n)$. Then $(M_n)_{n \in \mathbb{Z}_+}$ defined by

$$M_n = \sum_{k=0}^n X_k$$

is a martingale with respect to $(\mathscr{F}_n)_{n \in \mathbb{Z}_+}$.

Example A.6 (The name martingale). There is a *gambling strategy* called martingale. Consider a gambler that is playing roulette, where the outcome is either red or black with probability 1/2 each. After a loss the gambler always doubles his bet and keeps playing until the first time when he wins. After that he stops playing. If the first bet is *x*, then the gambler is sure to win *x* by this strategy! Do you see any problem with the martingale strategy? This is related to the previous example when we consider X_0, X_1, \ldots such that $X_0 = 0, X_1 = \hat{X}_1$ and

$$X_k = X_k \mathbb{1}_{\{\text{no wins during rounds } 1,2,...,k-1\}}$$

for $k \ge 2$, where \hat{X}_k are independent and $\mathsf{P}[\hat{X}_k = \pm x 2^k] = 1/2$. Then M_n is the wealth of the gambler after *n* rounds relative to the wealth at time zero.

Example A.7. Let $X_0, X_1, X_2, ...$ be a sequence of independent integrable random variables such that $\mathsf{E}(X_k) = 1$ for each k and let $\mathscr{F}_n = \sigma(X_0, X_1, X_2, ..., X_n)$. Then $(M_n)_{n \in \mathbb{Z}_+}$ defined by

$$M_n = \prod_{k=0}^n X_k$$

is a martingale with respect to $(\mathscr{F}_n)_{n \in \mathbb{Z}_+}$.

Example A.8. There are many martingales related to Brownian motions. In the main text, we will check the following formulas

A Supplementary material on probability theory

$$E[B_t | \mathscr{F}_s] = B_s$$

$$E[B_t^2 - t | \mathscr{F}_s] = B_s^2 - s$$

$$E\left[\exp\left(\theta B_t - \frac{\theta^2}{2}t\right) \middle| \mathscr{F}_s\right] = \exp\left(\theta B_s - \frac{\theta^2}{2}s\right)$$

A result that we need about martingales is the next inequality. Its proof is given in the exercises.

Theorem A.2 (Doob's martingale inequality). Suppose that $(M_t)_{t \in \mathbb{R}_+}$ is a martingale, which has a continuous path almost surely. Then for each $p \ge 1$, T > 0, $\lambda > 0$,

$$\mathsf{P}\left[\sup_{0\leq s\leq t}|M_s|\geq\lambda\right]\leq\frac{1}{\lambda^p}\mathsf{E}[|M_T|^p].$$

This result follows from the following auxiliary results.

Lemma A.1. If $(M_t)_{t \in \mathbb{R}_+}$ is a martingale, $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function and $\mathbb{E}[|\phi(M_t)|] < \infty$ for all $t \in \mathbb{R}$, then $(\phi(M_t))_{t \in \mathbb{R}_+}$ is a submartingale.

Proof. Follows from the conditional version of Jensen's inequality which is presented in Theorem A.1. \Box

Theorem A.3 (Doob's submartingale inequality). Suppose that $(M_t)_{t \in \mathbb{R}_+}$ is a non-negative submartingale, which has a continuous path almost surely. Then for each $\lambda > 0$,

$$\mathsf{P}\left[\sup_{0\leq s\leq t}M_s\geq\lambda\right]\leq\frac{1}{\lambda}\mathsf{E}[M_T].$$

The proof is left as an exercise.

A.4 Stopping times and optional stopping

Optional stopping is a concept that extends the martingale property to random times.

Definition A.5. If τ is a stopping time with respect to $(\mathscr{F}_t)_{t \in \mathbb{R}_+}$, define the *stopping time* σ *-algebra* as

$$\mathscr{F}_{\tau} = \{A \in \mathscr{F} : A \cap \{\tau \leq t\} \in \mathscr{F}_t \text{ for all } t \in \mathbb{R}_+\}$$

In the same way, as \mathscr{F}_t can be thought as the information available at time *t*, a stopping time σ -algebra \mathscr{F}_{τ} can be thought as the information available at a random time τ . The following set of results extends the martingale property to random times.

Theorem A.4. Let $(M_t)_{t \in \mathbb{R}_+}$ be a continuous martingale and τ and σ stopping times with respect to $(\mathscr{F}_t)_{t \in \mathbb{R}_+}$. Then for each $t \in \mathbb{R}_+$

$$\mathsf{E}[M_{t\wedge\tau}|\mathscr{F}_{\sigma}] = M_{t\wedge\sigma\wedge\tau}$$

References

Remark A.1. As seen below, we have to care about the integrability of quantities such as M_{τ} . Here the non-random number *t* in $M_{t\wedge\tau}$ guarantees that $\mathsf{E}|M_{t\wedge\tau}| < \infty$.

Corollary A.1. Let $(M_t)_{t \in \mathbb{R}_+}$ be a continuous martingale and τ be a stopping time with respect to $(\mathscr{F}_t)_{t \in \mathbb{R}_+}$. Then the process $(M_t^{\tau})_{t \in \mathbb{R}_+}$ defined by

$$M_t^{\tau} = M_{t \wedge \tau}$$

is a continuous martingale with respect to $(\mathscr{F}_t)_{t \in \mathbb{R}_+}$.

Remark A.2. Stopped local martingales are local martingales by the same argument.

Definition A.6. A collection \mathscr{C} of random variables is said to be *uniformly inte*grable if

$$\lim_{m \to \infty} \sup_{X \in \mathscr{C}} \mathsf{E}[|X|; |X| \ge m] = 0.$$

Corollary A.2. Let $(M_t)_{t \in \mathbb{R}_+}$ be a continuous martingale and τ and σ almost surely finite stopping times with respect to $(\mathscr{F}_t)_{t \in \mathbb{R}_+}$. Assume that $\sigma \leq \tau$. Then

$$\mathsf{E}[M_{\tau}|\mathscr{F}_{\sigma}] = M_{\sigma}$$

under any of the following conditions:

- *For some constant* C > 0, $\sigma \le \tau \le C$
- For some constant C > 0, $|M_t| \le C$ for all t.
- The collection of random variables M_t , $t \in \mathbb{R}_+$, is uniformly integrable.

Remark A.3. In a sense, the first two cases are special cases of the last case.

Remark A.4. In the last case, $M_{\sigma} = \mathsf{E}[M_{\tau}|\mathscr{F}_{\sigma}] = \mathsf{E}[M_{\infty}|\mathscr{F}_{\sigma}]$ for some random variable M_{∞} and $M_t \to M_{\infty}$ in L^1 .

References

- 1. Durrett, R.: Probability: theory and examples, fourth edn. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2010)
- 2. Kallenberg, O.: Foundations of modern probability. Springer Verlag (2002)
- Williams, D.: Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, Cambridge (1991)