
Appendix A
Supplementary material on probability theory

A.1 Basics of probability theory

As the reader of this book very well knows, probability is an assignment of a number
between zero and one to an event. This number tells how likely the event is — if
it is nearly zero, the event is very unlikely, and if it is almost one, the event is very
likely to occur. Mathematically probability is a measure defined on the collection of
events. In this chapter we list the required results of measure theory and probability
theory.

A.1.1 Measure theory

The basic concepts of measure theory that reader should be aware of are

• (X ,A ) a measurable space: X is set, A its σ -algebra
• measurable function f , (positive) measure µ , integral

∫
f dµ

• Lebesgue measure on Rd

• Lp(µ) space: Measurable f is in Lp(µ) if
∫
| f |pdµ < ∞. Notation: ‖ f‖p =

(
∫
| f |pdµ)1/p.

• Product measures: If (X ,A ,µ) and (Y,B,ν) are measure spaces, then their prod-
uct space is (X×Y,A ×B,µ×ν) where X×Y is Cartesian product, A ×B the
σ -algebra generated by A×B, A∈A and B∈B, and µ×ν the unique extension
of A×B 7→ µ(A)ν(B). (Here we have to assume that both measures µ and ν are
σ -finite in the sense that X can be written as X =

⋃
∞
k=1 Xk where Xk a measurable

sets with finite µ-measure and the same holds for Y and ν .)

Here is a summary of some results of measure theory. For the details and proof see
any book on measure theory.

• Monotone convergence theorem: If fn are measurable functions such that 0 ≤
fn↗ f , then

∫
f dµ = limn→∞

∫
fndµ
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• Dominated convergence theorem: If fn are measurable functions and f = limn→∞ fn
exists almost everywhere and ∃g≥ 0 such that | fn| ≤ g for all n and

∫
gdµ < ∞,

then
∫

f dµ = limn→∞

∫
fndµ .

• Fubini’s theorem: Assume that µ and ν are σ -finite. Let f ∈A ×B. If f ≥ 0 or∫
| f |d(µ×ν)< ∞ then

∫
X (
∫

Y f dν)dµ =
∫

X×Y f d(µ×ν) =
∫

Y (
∫

X f dµ)dν .
• Radon–Nikodym theorem: If ν is a σ -finite signed measure and µ is a σ -finite

measure on (X ,A ) and ν is absolutely continuous with respect to µ , then exist
g ∈F such that ν(A) =

∫
A gdµ . Here ν is absolutely continuous with respect to

µ , if ν(A) = 0 whenever µ(A) = 0, A ∈F . A notation: f = dν

dµ
and it is called

Radon–Nikodym derivative.

A notation which sometimes handy: f ∈A where f is a function on X means that
f is A -measurable.

A.1.2 Probability theory

Probability theory is essentially measure theoretical formulation of probability.
Therefore the basics of probability are easily accessible to anybody with background
in measure theory. Here is a list of basic facts about probability:

• A probability space is a measure space (Ω ,F ,P) such that P is a probability
measure, i.e., P[Ω ] = 1. Ω “outcomes”, F “events”

• A random variable is a F -measurable function X : Ω → R. H-valued random
variable is a measurable function X : Ω → H (H is a measurable space).

• The expected value of X is E[X ] =
∫

XdP ∈ [−∞,∞], which makes sense when
X ≥ 0 or when either

∫
X+dP < ∞ or

∫
X−dP < ∞, where X = X+−X− is the

decomposition of X into positive and negative part.
• Lp(P) space: ‖X‖p = (E[|X |p])1/p < ∞. By Hölder inequality, ‖X‖p ≤ ‖X‖q for

1≤ p≤ q and hence Lq(P)⊂ Lp(P) (a fact which isn’t necessarily true for gen-
eral measures).

• Independence: sub-σ -algebras A1, . . . ,An of F are independent if

P[A1∩A2∩ . . .∩An] = P[A1] ·P[A2] · . . . ·P[An] for Ak ∈Ak.

Random variables X1, X2,. . . , Xn are independent if the σ -algebras σ(X1), σ(X2),. . . ,
σ(Xn) are independent

⇔P[{X1 ∈ B1}∩{X2 ∈ B2}∩ . . .∩{Xn ∈ Bn}]
= P[X1 ∈ B1] ·P[X2 ∈ B2] · . . . ·P[Xn ∈ Bn] for Bk ∈BR.

A couple of useful notations:

• E[X ;E] =
∫

E XdP=
∫
1EXdP.

• A random variable X induces a measure on R by µX (B) = P[X−1(B)] where B ∈
BR and BR is the Borel σ -algebra on R. The measure µX is called distribution
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(or law) of X . When X and Y induce the same measure, we say that X and Y are
equal in distribution and use the notation

X d
= Y.

A.2 Conditional expected value

Definition A.1. Let X be a L1(P,F ) random variable and let G ⊂F be a σ -algebra.
The conditional expected value of X given G is defined to be any random variable
Y such that Y is (i) G -measurable and (ii) for any E ∈ G∫

E
XdP=

∫
E

Y dP.

We then use the notation E[X |G ] for the conditional expected value and any such Y
is called a version of E[X |G ].

Proposition A.1. The conditional expected value exists and is unique in the sense
that if Y and Y ′ satisfy (i) and (ii) then Y = Y ′ almost surely. Also the conditional
expected value is integrable.

Proof. Let G = {Y ≥ 0} which is G -measurable. Then

E[|Y |] =
∫

G
Y dP−

∫
Gc

Y dP=
∫

G
XdP−

∫
Gc

XdP≤ ‖X‖1,

where Gc is the complement Ω \G of G. Therefore E[|Y |]< ∞.
Existence follows from Radon–Nikodym theorem:

E 7→
∫

E
XdP

is a signed measure, which is absolutely continuous with respect to P. Then the
Radon-Nikodym derivative Y of that measure satisfies the properties of the condi-
tional expected value.

Uniqueness: If Y and Y ′ are version of E[X |G ], then let E = {Y > Y ′}. Then if
P[E]> 0,

∫
E Y dP>

∫
E Y ′dP which is a contradiction. Hence P[{Y = Y ′}] = 1. ut

Intuitively E[X |G ] should be thought to the best guess of the value of X given the
information contained in G .

Example A.1. (Perfect information) If X is G measurable then E[X |G ] = X .

Example A.2. (No information) If X is independent of G then E[X |G ] = EX .

Example A.3. (Relation to the usual conditional expected value) Let Ω1,Ω2, . . . be
a finite or countably infinite disjoint partition of Ω into F -measurable sets, each of
which has positive probability. If G is the σ -algebra generated by Ω1,Ω2, . . . then
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E[X |G ] =
E[X ;Ωk]

P[Ωk]
on Ωk.

Note that G = {
⋃

k∈I Ωk : I ⊂ N}.

We list next some properties of conditional expected value, see Section 5.1 of [1]
or Section 9.7 of [3].

Theorem A.1. Let X ,Y be L1(P,F ) random variables and a,b∈R and G ,G1,G2⊂
F be σ -algebras. Then

1. E[aX +bY |G ] = aE[X |G ]+bE[Y |G ]
2. E[E[X |G ]] = E[X ]
3. E[X Y |G ] = Y E[X |G ] if Y is G -measurable and X ·Y is L1(P,F )
4. (Tower property) E[E[X |G2]|G1] = E[X |G1] if G1 ⊂ G2
5. (Jensen’s inequality) If φ :R→R is convex and E[|φ(X)|]<∞ then φ(E[X |G ])≤

E[φ(X)|G ].
6. |E[X |G ]| ≤ E[|X ||G ] and when E[|X |2]< ∞, |E[X |G ]|2 ≤ E[|X |2|G ]
7. If Xn→ X in Lp(P,F ) then E[Xn|G ]→ E[X |G ] in Lp(P,F ).

The following notation is sometimes used: if X and Y are random variables and
σ(Y ) is the σ -algebra generated by Y , then E[X |Y ] means the same as E[X |σ(Y )].

A.3 Martingales

Definition A.2. A filtration on (Ω ,F ) is a collection (Ft)t∈R≥0 of sub-σ -algebras
Ft ⊂F such that for each 0≤ s < t, Fs ⊂Ft .

Recall that a σ -algebra can be thought as information and thus the filtration
should be thought as the information that we learn about as t increases. Hence Ft
is the information available at time t. If Ft = σ(Xs,s ∈ [0,T ]) where (Xt)t∈R≥0 is a
stochastic process, then a random variable Y is Ft measurable if it is a function of
the random variables Xs,s ∈ [0,T ].

The class of processes of the following definition is very important.

Definition A.3. A stochastic process (Mt)t∈R+ is called a (continuous-time) martin-
gale with respect to a filtration (Ft)t∈R+ if

1. Mt is Ft -measurable for each t ≥ 0,
2. E[|Mt |]< ∞ for each t ≥ 0,
3. E[Mt |Fs] = Ms for each 0≤ s < t.

If the last property is replaced by E[Mt |Fs] ≥Ms, the process is called submartin-
gale, and if the last property is replaced by E[Mt |Fs] ≤ Ms, the process is called
supermartingale.

Quite many results for martingales are proved using discrete-time martingales.
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Definition A.4. A discrete-time filtration on (Ω ,F ) is a collection (Ft)t∈Z+ of sub-
σ -algebras Ft ⊂F such that for each t ∈ Z+, Ft ⊂Ft+1.

A stochastic process (Mt)t∈Z+ is called a (discrete-time) martingale with respect
to a filtration (Ft)t∈Z+ if

1. Mt is Ft -measurable for each t ∈ Z+,
2. E[|Mt |]< ∞ for each t ∈ Z+,
3. E[Mt+1|Ft ] = Mt for each t ∈ Z+.

If the last property is replaced by E(Mt+1|Ft)≥Mt , the process is called submartin-
gale, and if the last property is replaced by E(Mt+1|Ft)≤Mt , the process is called
supermartingale.

Example A.4. Let X ∈ L1(P,F ) and let (Ft)t≥0 be a filtration. Then Mt = E(X |Ft)
is a martingale: 1 holds by the definition of conditional expected value, 2 holds by
items 2 and 6 of Theorem A.1 and 3 holds by item 4 of Theorem A.1.

Example A.5. Let X0,X1,X2, . . . be a sequence of independent integrable random
variables such that E(Xk) = 0 for each k and let Fn = σ(X0,X1,X2, . . . ,Xn). Then
(Mn)n∈Z+ defined by

Mn =
n

∑
k=0

Xk

is a martingale with respect to (Fn)n∈Z+ .

Example A.6 (The name martingale). There is a gambling strategy called martingale.
Consider a gambler that is playing roulette, where the outcome is either red or black
with probability 1/2 each. After a loss the gambler always doubles his bet and keeps
playing until the first time when he wins. After that he stops playing. If the first bet
is x, then the gambler is sure to win x by this strategy! Do you see any problem with
the martingale strategy? This is related to the previous example when we consider
X0,X1, . . . such that X0 = 0, X1 = X̂1 and

Xk = X̂k1{no wins during rounds 1,2,...,k−1}

for k≥ 2, where X̂k are independent and P[X̂k =±x2k] = 1/2. Then Mn is the wealth
of the gambler after n rounds relative to the wealth at time zero.

Example A.7. Let X0,X1,X2, . . . be a sequence of independent integrable random
variables such that E(Xk) = 1 for each k and let Fn = σ(X0,X1,X2, . . . ,Xn). Then
(Mn)n∈Z+ defined by

Mn =
n

∏
k=0

Xk

is a martingale with respect to (Fn)n∈Z+ .

Example A.8. There are many martingales related to Brownian motions. In the main
text, we will check the following formulas
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E[Bt |Fs] = Bs

E[B2
t − t |Fs] = B2

s − s

E

[
exp
(

θBt −
θ 2

2
t
)∣∣∣∣Fs

]
= exp

(
θBs−

θ 2

2
s
)
.

A result that we need about martingales is the next inequality. Its proof is given
in the exercises.

Theorem A.2 (Doob’s martingale inequality). Suppose that (Mt)t∈R+ is a mar-
tingale, which has a continuous path almost surely. Then for each p ≥ 1, T > 0,
λ > 0,

P

[
sup

0≤s≤t
|Ms| ≥ λ

]
≤ 1

λ pE[|MT |p].

This result follows from the following auxiliary results.

Lemma A.1. If (Mt)t∈R+ is a martingale, φ : R → R is a convex function and
E[ |φ(Mt)|]< ∞ for all t ∈ R, then (φ(Mt))t∈R+ is a submartingale.

Proof. Follows from the conditional version of Jensen’s inequality which is pre-
sented in Theorem A.1. ut

Theorem A.3 (Doob’s submartingale inequality). Suppose that (Mt)t∈R+ is a
non-negative submartingale, which has a continuous path almost surely. Then for
each λ > 0,

P

[
sup

0≤s≤t
Ms ≥ λ

]
≤ 1

λ
E[MT ].

The proof is left as an exercise.

A.4 Stopping times and optional stopping

Optional stopping is a concept that extends the martingale property to random times.

Definition A.5. If τ is a stopping time with respect to (Ft)t∈R+ , define the stopping
time σ -algebra as

Fτ = {A ∈F : A∩{τ ≤ t} ∈Ft for all t ∈ R+}

In the same way, as Ft can be thought as the information available at time t, a
stopping time σ -algebra Fτ can be thought as the information available at a random
time τ . The following set of results extends the martingale property to random times.

Theorem A.4. Let (Mt)t∈R+ be a continuous martingale and τ and σ stopping times
with respect to (Ft)t∈R+ . Then for each t ∈ R+

E[Mt∧τ |Fσ ] = Mt∧σ∧τ
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Remark A.1. As seen below, we have to care about the integrability of quantities
such as Mτ . Here the non-random number t in Mt∧τ guarantees that E|Mt∧τ |< ∞.

Corollary A.1. Let (Mt)t∈R+ be a continuous martingale and τ be a stopping time
with respect to (Ft)t∈R+ . Then the process (Mτ

t )t∈R+ defined by

Mτ
t = Mt∧τ

is a continuous martingale with respect to (Ft)t∈R+ .

Remark A.2. Stopped local martingales are local martingales by the same argument.

Definition A.6. A collection C of random variables is said to be uniformly inte-
grable if

lim
m→∞

sup
X∈C

E[|X | ; |X | ≥ m] = 0.

Corollary A.2. Let (Mt)t∈R+ be a continuous martingale and τ and σ almost surely
finite stopping times with respect to (Ft)t∈R+ . Assume that σ ≤ τ . Then

E[Mτ |Fσ ] = Mσ

under any of the following conditions:

• For some constant C > 0, σ ≤ τ ≤C
• For some constant C > 0, |Mt | ≤C for all t.
• The collection of random variables Mt , t ∈ R+, is uniformly integrable.

Remark A.3. In a sense, the first two cases are special cases of the last case.

Remark A.4. In the last case, Mσ = E[Mτ |Fσ ] = E[M∞|Fσ ] for some random vari-
able M∞ and Mt →M∞ in L1.
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