Department of Mathematics and Statistics Riemannian geometry
Exercise 7

22.3.2016

Note: No classes on Wednesday, March 16.

1. Let (M, g) and (\tilde{M}, \tilde{g}) be Riemannian manifolds and $\varphi: M \rightarrow \tilde{M}$ an isometry. Prove that the curvature tensor fields R of M and \tilde{R} of \tilde{M} satisfy an equation

$$
\tilde{R}\left(\varphi_{*} X, \varphi_{*} Y\right) \varphi_{*} Z=\varphi_{*}(R(X, Y) Z)
$$

for all $X, Y, Z \in \mathcal{T}(M)$. Prove furthermore that the Riemannian curvature tensors R and \tilde{R} satisfy $\varphi^{*} \tilde{R}=R$.
You may use the fact that $\varphi^{*} \tilde{\nabla}=\nabla$, that is,

$$
\varphi_{*}\left(\nabla_{X} Y\right)=\tilde{\nabla}_{\varphi_{*} X}\left(\varphi_{*} Y\right)
$$

2. Prove that for all $f, g \in C^{\infty}(M)$
(a) $R\left(f X_{1}+g X_{2}, Y\right) Z=f R\left(X_{1}, Y\right) Z+g R\left(X_{2}, Y\right) Z$;
(b) $R\left(X, f Y_{1}+g Y_{2}\right) Z=f R\left(X, Y_{1}\right) Z+g R\left(X, Y_{2}\right) Z$;
(c) $R(X, Y)(f Z)=f R(X, Y) Z$;
(d) $R(X, Y)(Z+W)=R(X, Y) Z+R(X, Y) W$.
3. Let M be a Riemannian manifold. Prove that
(1) $R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0$;
(2) $\langle R(X, Y) Z, W\rangle=\langle R(Z, W) X, Y\rangle$;
(3) $\langle R(X, Y) Z, W\rangle=-\langle R(X, Y) W, Z\rangle$.
4. Let $P \subset T_{p} M$ be a 2-dimensional subspace and let $u, v \in P$ be linearly independent. Prove that $K(u, v)$ is independent of the choice of $u, v \in P$.
5. Show that any connected Riemannian manifold (M, g) admits a Riemannian metric $\tilde{g}=\varphi g$, where $\varphi: M \rightarrow \mathbb{R}$ is a positive C^{∞}-function, such that (M, \tilde{g}) is complete.
