Department of Mathematics and Statistics Riemannian geometry Exercise 5 23.2.2016

1. Let M be a connected Riemannian manifold and $d: M \times M \to \mathbb{R}$ the metric defined by the Riemannian metric tensor as in Theorem 4.24. Fix $p \in M$ and L > 1. Let $\varphi: U \to \varphi U \subset \mathbb{R}^n$ be a normal chart at p. Prove that there exists r > 0 and a normal ball $B = \exp_p(B(0,r)) \subset U$ such that $\varphi|B: B \to \varphi B$ is L-bilipschitz from the metric space (B, d) to φB , i.e.

$$\frac{1}{L}d(x,y) \le |\varphi(x) - \varphi(y)| \le Ld(x,y)$$

for every $x, y \in B$.

- 2. Prove Lemma 4.34: Let $\gamma : [a, b] \to M$ be admissible and V a continuous piecewise smooth vector field along γ . Then there exists Γ , a variation of γ , such that V is the variation field of Γ . If V is proper, Γ can be taken to be proper as well.
- 3. Let $B(p,r) = \exp_p B(0,r)$ be a normal ball such that $\partial B(p,r)$ is a normal sphere (= $\exp_p \partial B(0,r)$). Prove that, for every $q \in M \setminus B(p,r)$, there exists a point $q' \in \partial B(p,r)$ such that d(p,q) = r + d(q',q).
- 4. Generalize the first variation formula (Theorem 4.35) to the case of a variation that is not necessarily proper.
- 5. Suppose that N and N' are submanifolds of M and that $\gamma : [0, d] \rightarrow M$ is a unit speed geodesic such that $\gamma(0) \in N, \ \gamma(d) \in N'$, and that $\ell(\gamma) = d = d(N, N') > 0$. Here $d(N, N') = \inf\{d(x, y) : x \in N, y \in N'\}$. (In other words, γ minimizes the distance between N and N'.) Show that $\dot{\gamma}_0 \perp T_{\gamma(0)}N$ and $\dot{\gamma}_d \perp T_{\gamma(d)}N'$.