Department of Mathematics and Statistics Riemannian geometry Exercise 4 16.2.2016

1. Let $A_{ij}: \mathbb{R}^m \to \mathbb{R}, i, j = 1, ..., n$, be smooth mappings and denote $A = (A_{ij})$. Prove that in the open set $\{x \in \mathbb{R}^m: \det A > 0\}$ we have

$$\frac{\partial}{\partial x^k} \log \det A = \operatorname{tr} \left(\frac{\partial A}{\partial x^k} A^{-1} \right)$$

for all k = 1, ..., m. [Recall that the trace of an $n \times n$ matrix (a_{ij}) is the sum of the diagonal entries $\sum_{i=1}^{n} a_{ii}$.]

2. Let M be a Riemannian manifold and let $U \subset M$ be an open set. The divergence of a vector field $X \in \mathcal{T}(U)$, denoted by div X, is the trace of the linear map $Y \mapsto \nabla_Y X$. Thus div $X : U \to \mathbb{R}$,

$$(\operatorname{div} X)(p) = \operatorname{tr}(v \mapsto \nabla_v X), \quad v \in T_p M.$$

Suppose that (U, x), $x = (x^1, \ldots, x^n)$, is a chart. Express div X in local coordinates.

- 3. Prove the claims (a), (d), and (e) in Lemma 4.19. That is: Suppose (U, φ) is a normal chart at p. Show that
 - (a) If $v = v^i e_i \in T_p M$, then the normal coordinates of $\gamma^v(t)$ are (tv^1, \ldots, tv^n) whenever $\gamma^v(t) \in U$.
 - (d) If $\varepsilon > 0$ is so small that \exp_p is diffeomorphic in $B(0, \varepsilon) \subset T_p M$, then the set $\{x \in U : r(x) < \varepsilon\}$ is the normal ball $\exp_p(B(0, \varepsilon))$.
 - (e) If $q \in U \setminus \{p\}$, then $\left(\frac{\partial}{\partial r}\right)_q$ is the velocity vector $(=\dot{\gamma})$ of the unit speed geodesic from p to q (=unique by (a)), and therefore $|\frac{\partial}{\partial r}| \equiv 1$.
- 4. Prove the claims (c) and (f) in Lemma 4.19. That is: Suppose (U, φ) is a normal chart at p. Show that
 - (c) The components of the Riemannian metric (with respect to the normal chart) at p are $g_{ij}(p) = \delta_{ij}$.
 - (f) $\partial_k g_{ij}(p) = 0$ and $\Gamma_{ij}^k(p) = 0$.
- 5. Complete the proof of Theorem 4.24: Suppose that M is a connected Riemannian manifold and define the function $d: M \times M \to \mathbb{R}$ by

$$d(p,q) = \inf_{\gamma} \ell(\gamma),$$

where the infimum is taken over all admissible paths from p to q. Show that

- (a) $d(p,q) < \infty$ for all $p,q \in M$,
- (b) $d(p,q) \le d(p,z) + d(z,q)$ for all $p,q,z \in M$,
- (c) the metric space topology = the manifold topology.