Department of Mathematics and Statistics Riemannian geometry Exercise 11 3.5.2016

The course can be passed by an exam (e.g. May 18 (12:00-16:00) or May 25 (12:00-16:00)).

1. Suppose that M has constant sectional curvature κ . Let $p \in M$ and let e_1, \ldots, e_n be an orthonormal basis of T_pM , (U, φ) the corresponding normal chart at p such that U is a normal ball, and g_{ij} the corresponding component functions of the Riemannian metric. Prove that

$$g_{ij}(\exp_p v) = \frac{v^i v^j}{|v|^2} + \frac{\mathbf{S}_{\kappa}^2(|v|)}{|v|^2} \left(\delta_{ij} - \frac{v^i v^j}{|v|^2}\right),$$

for $\exp_p v \in U$, $v = v^i e_i \neq 0$. Here

$$\mathbf{S}_{\kappa}(t) = \begin{cases} \frac{1}{\sqrt{\kappa}} \sin(\sqrt{\kappa} t), & \kappa > 0, \\ t, & \kappa = 0, \\ \frac{1}{\sqrt{-\kappa}} \sinh(\sqrt{-\kappa} t), & \kappa < 0. \end{cases}$$

- 2. Let M and \tilde{M} be *n*-dimensional Riemannian manifolds of constant sectional curvature κ . Prove that for any $p \in M$ and $\tilde{p} \in \tilde{M}$ there exists $\delta > 0$ such that the geodesic balls $B(p, \delta) \subset M$ and $B(\tilde{p}, \delta) \subset \tilde{M}$ are isometric.
- 3. Suppose that $\gamma^{\nu}(t_0)$ is the cut point of $p = \gamma^{\nu}(0)$ along γ^{ν} . Prove that at least one of the following conditions holds
 - (a) $\gamma^{v}(t_0)$ is the first conjugate point of p along γ^{v} , or
 - (b) there exists a unit speed geodesic $\sigma \neq \gamma^{v} | [0, t_0]$ from p to $\gamma^{v}(t_0)$ such that $\ell(\sigma) = t_0 = \ell(\gamma^{v} | [0, t_0])$.
- 4. Prove that, for a complete Riemannian manifold, $\operatorname{inj}(p) = d(p, C(p))$ provided $C(p) \neq \emptyset$, where C(p) is as in Definition 8.15.
- 5. Prove that $p \mapsto inj(p)$ is a continuous positive function on any Riemannian manifold.