Department of Mathematics and Statistics Riemannian geometry Exercise 1 26.1.2016

1. The standard Riemannian metric of the Euclidean space \mathbb{R}^n is

$$g = \delta_{ij} dx^i dx^j.$$

Write g in the case of the plane \mathbb{R}^2 by using the polar coordinates $(r, \vartheta), x^1 = r \cos \vartheta, x^2 = r \sin \vartheta$.

2. A surface of revolution is obtained as follows: Consider a smooth simple (i.e. injective) curve $\gamma = (r, z) \colon I \to \mathbb{R}^2$, $\gamma(t) = (r(t), z(t))$, where $I \subset \mathbb{R}$ is an interval. By rotating this curve around z-axis, we get a surface whose cylindrical coordinate representation is

$$(t, \vartheta) \mapsto f(t, \vartheta) = (r(t)\cos\vartheta, r(t)\sin\vartheta, z(t)).$$

We obtain a natural frame ∂_t , ∂_{ϑ} with coframe dt, $d\vartheta$. Write the induced Riemannian metric $dx^2 + dy^2 + dz^2$ from \mathbb{R}^3 in this frame.

3. Let (M,g) be a Riemannian n-manifold. Prove that for every $p \in M$ there exist a neighborhood $U \ni p$ and smooth vector fields $E_1, \ldots, E_n \in \mathcal{T}(U)$ that form a local orthonormal frame in U, i.e. the vectors $(E_1)_q, \ldots, (E_n)_q$ form an orthonormal basis for T_qM for every $q \in U$. [Hint: Use the Gram-Schmidt algorithm.]

Definitions for problems 4 and 5:

(a) Let (M, g), $g = \langle \cdot, \cdot \rangle$, be a Riemannian manifold, $U \subset M$ open, and $f \in C^{\infty}(U)$ a real-valued function. The *gradient* of f is a vector field $\nabla f \in \mathcal{T}(U)$ such that

$$\langle \nabla f, X \rangle = Xf$$

for every $X \in \mathcal{T}(U)$.

(b) We say that a Riemannian metric $\hat{g} = \langle \langle \cdot, \cdot \rangle \rangle$ is obtained from the Riemannian metric $g = \langle \cdot, \cdot \rangle$ by a conformal change if

(1)
$$\langle \langle \cdot, \cdot \rangle \rangle_p = \varphi(p) \langle \cdot, \cdot \rangle_p$$

for every $p \in M$, where $\varphi \colon M \to]0, \infty[$ is a (positive) C^{∞} -function.

- **4.** Let (M,g), $g=\langle \cdot, \cdot \rangle$, be a Riemannian manifold and let (U,x), $x=(x^1,\ldots,x^n)$, be a chart. Express the gradient, ∇f , of a C^{∞} -function $f:U\to\mathbb{R}$ in local coordinates, i.e. by using the coordinate frame $\partial_1,\ldots,\partial_n$.
- **5.** Let (M^n, g) , $g = \langle \cdot, \cdot \rangle$, be a Riemannian *n*-manifold. Suppose that $\hat{g} = \langle \langle \cdot, \cdot \rangle \rangle$ is obtained from g by a conformal change (1). Let $f \colon M^n \to \mathbb{R}$ be a C^{∞} -function, ∇f its gradient with respect to

the Riemannian metric $\langle \cdot, \cdot \rangle$, and $|\nabla f| = \langle \nabla f, \nabla f \rangle^{1/2}$. Furthermore, let $\hat{\nabla} f$ be the gradient of f with respect to the Riemannian metric $\langle \langle \cdot, \cdot \rangle \rangle$ and $\|\hat{\nabla} f\| = \langle \langle \hat{\nabla} f, \hat{\nabla} f \rangle \rangle^{1/2}$.

- (a) Express $\hat{\nabla} f$ and $\|\hat{\nabla} f\|$ in terms of the function φ in formula (1), ∇f , and $|\nabla f|$.
- (b) Let (U, x) be a chart. Compare the integrals

(2)
$$\int_{U} |\nabla f|^{n} d\mu$$

and

(3)
$$\int_{U} \|\hat{\nabla}f\|^{n} d\hat{\mu}.$$

What do you notice? Above in (2) we integrate with respect to the Riemannian metric g and in (3) with respect to the Riemannian metric \hat{g} . In other words,

$$\int_{U} |\nabla f|^{n} d\mu = \int_{xU} \left(|\nabla f|^{n} \sqrt{\det(g_{ij})} \right) \circ x^{-1} dm$$

and

$$\int_{U} \|\hat{\nabla} f\|^n \, d\hat{\mu} = \int_{xU} \left(\|\hat{\nabla} f\|^n \sqrt{\det(\hat{g}_{ij})} \right) \circ x^{-1} \, dm.$$