Department of Mathematics and Statistics Quasiconformal mappings Exercise Set 4 18.2.2016

1. Let I = [0, 1] be the unit interval. Given a parameter 0 , we define a 4-adic coding of <math>I as follows: First, we partition $I = I_1^{(p)} \cup I_2^{(p)} \cup I_3^{(p)} \cup I_4^{(p)}$ by subdividing I at the points

$$0 < p(1-p) < p < 1-p(1-p) < 1.$$

The intervals $I_{i_1i_2i_3,...,i_n}^{(p)}$ are defined inductively, so that if $L_{i_1,i_2,...,i_n}^{(p)}$ is an affine map that takes $I_{i_1i_2i_3,...,i_n}^{(p)}$ to I, then L maps partition points to partition points.

For two parameters 0 < p, q < 1, there exists a unique homeomorphism $H_{p,q}$ of [0,1] which maps $I_{i_1i_2i_3,...,i_n}^{(p)}$ onto $I_{i_1i_2i_3,...,i_n}^{(q)}$.

- (a) Show that $H_{p,q}$ is quasisymmetric.
- (b) Show that if $p \neq q$, then $H_{p,q}$ is differentiable at no point of *I*. Conclude that $H_{p,q}$ is not absolutely continuous.

Remark. It may seem more natural to split $I = [0, p] \cup [p, 1]$ in just two pieces. This construction; however, does not lead to a quasisymmetries.

2. According to Theorem 3.11 in the notes, if $f : \Omega \to \Omega'$ is a η -quasisymmetric map between bounded domains in \mathbb{R}^2 , then

$$L_f(z_0) := \limsup_{z \to z_0} \frac{|f(z) - f(z_0)|}{|z - z_0|}$$

is in L^2_{loc} , which is slightly better than the weak- L^2_{loc} estimate for

$$L_f^{\epsilon}(z_0) := \sup_{|z-z_0| \le \epsilon} \frac{|f(z) - f(z_0)|}{|z - z_0|}.$$

- (a) Show that in 1-dimension, the analogous function $L_f(x) \in L^1$.
- (b) It would appear that $\int_a^b L_f^\epsilon \to \int_a^b L_f$ converge as $\epsilon \to 0$ (since the functions L_f^ϵ are decreasing in ϵ), suggesting that f is absolutely continuous. (This seems to contradict the previous exercise.) Does the monotone convergence not apply?