Department of Mathematics and Statistics
Quasiconformal mappings
Exercise Set 3
11.2.2016

1. Let $\alpha>0$. Compute the dilatations $\mu_{L}=\bar{\partial} L / \partial L$ and $\mu_{R}=\bar{\partial} R / \partial R$ where

$$
L(x+i y)=(\alpha+1) x+i y
$$

is the linear stretch mapping and

$$
R(z)=z|z|^{\alpha}
$$

is radial stretch mapping. Verify explicitly that $\mu_{L}=\left(e^{z}\right)^{*} \mu_{R}$.
2. Write down a formula for the Jacobian of a map $f: \mathbb{C} \rightarrow \mathbb{C}$ in terms of the complex derivatives ∂f and $\bar{\partial} f$.
3. Construct an example of a map $f: E \rightarrow \mathbb{R}^{2}$, with $E \subset \mathbb{R}^{2}$, that is weakly quasisymmetric but not quasisymmetric.
4. Suppose $u \in C^{2}(\bar{\Omega})$ where $\Omega=\{z: r<|z|<1\}$, with boundary values $u\left(r e^{i \theta}\right)=0, u\left(e^{i \theta}\right)=1,0 \leq \theta \leq 2 \pi$. Find the optimal lower bound for the energy

$$
\mathscr{E}(u)=\int_{\Omega}|\nabla u|^{2} d x d y
$$

5. Suppose $u: \Omega^{\prime} \rightarrow \mathbb{R}$ is a Lipschitz function. Given $f \in W_{\text {loc }}^{1, p}$ with $f(\Omega) \subseteq \Omega^{\prime}$, show that $u \circ f \in W_{\text {loc }}^{1, p}$.

A word on notation. Above,

$$
\partial f:=\frac{\partial f}{\partial z}, \quad \bar{\partial} f:=\frac{\partial f}{\partial \bar{z}} .
$$

If f is holomorphic, then

$$
f^{*}\left(\mu(z) \frac{d \bar{z}}{d z}\right)=\mu(f(z)) \frac{\overline{f^{\prime}(z)}}{f^{\prime}(z)} \cdot \frac{d \bar{z}}{d z}
$$

