Department of Mathematics and Statistics
Quasiconformal mappings
Exercise Set 1
28.1.2016

1. For $\alpha, \beta>0$, let $f: \mathbb{R} \rightarrow \mathbb{R}$ that $f(x)=x^{\alpha}$ if $x>0$ and $f(x)=-|x|^{\beta}$ for $x<0$. Show that f is quasisymmetric if and only if $\alpha=\beta$.
(Note that f and f^{-1} are Hölder continuous mappings for any $\alpha, \beta>0$.)
2. (a) Show that the snowflake K may be represented as the image of the line segment $[0,1]$ under a $C t^{\alpha}$-quasisymmetric map $f:[0,1] \rightarrow K$ for some $\alpha<1$.
(b) Nevertheless, show that one cannot take α to be arbitrarily close to 1 .

3. Suppose $f: \mathbb{D} \rightarrow \mathbb{C}$ is a conformal mapping that admits an η-quasisymmetric extension to the plane. For an arc $I \subset \mathbb{S}^{1}$, define its conformal midpoint z_{I} as the midpoint of the hyperbolic geodesic joining z_{1} and z_{2}. Show that there exists a constant C (depending on η) so that

$$
\frac{1}{C} \cdot\left|f^{\prime}\left(z_{I}\right)\right| \leq \frac{\operatorname{diam} f(I)}{\operatorname{diam} I} \leq C \cdot\left|f^{\prime}\left(z_{I}\right)\right|
$$

(Hint: use Koebe's distortion theorem.)
4. Let

$$
f(z)=z+\frac{b_{1}}{z}+\frac{b_{2}}{z^{2}}+\frac{b_{3}}{z^{3}}+\ldots
$$

be a conformal map of the exterior unit disk $\{z:|z|>1\}$ to a domain $\Omega=$ $\mathbb{C} \backslash K$. The aim of this problem is to find a formula for the area of K in terms of the coefficients b_{k}.
(a) Find an asymptotic formula (as $R \rightarrow \infty$) for the area $A(R)$ of the compact set enclosed by the curve $f\left(S_{R}\right)$, where $S_{R}=\{z:|z|=R\}$.
(b) Compute

$$
B(R)=\lim _{\rho \rightarrow 1} \int_{\rho<|z|<R}\left|f^{\prime}(z)\right|^{2} .
$$

by using the power series expansion.
(c) Analyze $\lim _{R \rightarrow \infty}(A(R)-B(R))$.

