Department of Mathematics and Statistics Quasiconformal mappings Exercise Set 1 28.1.2016

- For α, β > 0, let f : ℝ → ℝ that f(x) = x^α if x > 0 and f(x) = -|x|^β for x < 0. Show that f is quasisymmetric if and only if α = β.
 (Note that f and f⁻¹ are Hölder continuous mappings for any α, β > 0.)
- 2. (a) Show that the snowflake K may be represented as the image of the line segment [0, 1] under a Ct^{α} -quasisymmetric map $f : [0, 1] \to K$ for some $\alpha < 1$.
 - (b) Nevertheless, show that one cannot take α to be arbitrarily close to 1.

3. Suppose $f : \mathbb{D} \to \mathbb{C}$ is a conformal mapping that admits an η -quasisymmetric extension to the plane. For an arc $I \subset \mathbb{S}^1$, define its conformal midpoint z_I as the midpoint of the hyperbolic geodesic joining z_1 and z_2 . Show that there exists a constant C (depending on η) so that

$$\frac{1}{C} \cdot |f'(z_I)| \le \frac{\operatorname{diam} f(I)}{\operatorname{diam} I} \le C \cdot |f'(z_I)|$$

(Hint: use Koebe's distortion theorem.)

4. Let

$$f(z) = z + \frac{b_1}{z} + \frac{b_2}{z^2} + \frac{b_3}{z^3} + \dots$$

be a conformal map of the exterior unit disk $\{z : |z| > 1\}$ to a domain $\Omega = \mathbb{C} \setminus K$. The aim of this problem is to find a formula for the area of K in terms of the coefficients b_k .

- (a) Find an asymptotic formula (as $R \to \infty$) for the area A(R) of the compact set enclosed by the curve $f(S_R)$, where $S_R = \{z : |z| = R\}$.
- (b) Compute

$$B(R) = \lim_{\rho \to 1} \int_{\rho < |z| < R} |f'(z)|^2.$$

by using the power series expansion.

(c) Analyze $\lim_{R\to\infty} (A(R) - B(R))$.