Department of Mathematics and Statistics, University of Helsinki
 Numerical methods and the C language, Winter and Spring 2016

Workshop 5

Exercise 5 FILE: h05.tex printed on February 19, 2016at 14.18

1. Interpolate the sine-function in the interval $[0, \pi / 2]$ using the points

$$
x_{k}=k * \pi / 10, \quad y_{k}=\sin \left(x_{k}\right), \quad k=0,1, \ldots, 5
$$

Use the following different methods:
(a) polynomial interpolation,
(b) cubic spline interpolation, with $f^{\prime}(0)=f^{\prime}(\pi / 2)$ as boundary condition (in GSL "periodic boundary condition").
(c) cubic spline interpolation with natural boundary condition.

In each case, compute the maximum error at the points $z_{j}=k * \pi / 200, k=0,1, \ldots, 100$.
2. Given $f(1)=1, f(2)=125, f(3)=729, f(4)=2197$, find a polynomial approximation for the numbers $f(2+i * 0.25), \mathfrak{i}=0,1,2,3,4$, using the program polint or gpolint (polint is a NR function, gpolint can be found at the webpage). Find also the corresponding error estimates. Do the same thing for the data $(i, f[i]), \mathfrak{i}=1,2,3,4$, where $f[i]$ is a random number.
3. Compute the values of the Γ function at the points $x=0.5+0.1 * j, j=1, \ldots, 20$, and form a spline approximation on this interval. Then estimate the maximal deviation of the approximation from the true value of the function by tabulating the difference with increment 0.01 on this interval.
4. Using the programs numder and numdf (or gnumder and gnumdf) and Gnuplot, make a program which draws a picture of a function and its second derivative. Draw also the sum of the function $\sin (x)$ and its second derivative, which is supposed to be zero.
5. Let A be an $m \times n, m \geq n$, matrix. Using random matrices, test the validity of the following statements for the pseudoinverse A^{+}of A :
(a) $\left(A^{+}\right)^{+}=A$,
(b) $\left(A^{+}\right)^{\top}=\left(A^{\top}\right)^{+}$
(c) If B is a $n \times p$ matrix, then $(A B)^{+}=B^{+} A^{+}$.

For item (c) consider separately the cases $p \geq n$ and $p<n$.
6. Fitting a second degree polynomial

$$
p(t)=x_{0}+x_{1} * t+x_{2} * t^{2}
$$

to the data set $(1,2),(2,2),(3,3),(3,5),(4,6)$ leads to the overdetermined system $A x=b$ with

$$
A=[1,1,1 ; 1,2,4 ; 1,3,9 ; 1,3,9 ; 1,4,16] \quad b=[2 ; 2 ; 3 ; 5 ; 6]
$$

Find the coefficients of the polynomial (a) with the SVDsolve (b) with HOUSEsolve method.
Note: HOUSEsolve can be downloaded from the course www-page. It is part of the file myhouse.c(pp).

