Department of Mathematics and Statistics, University of Helsinki
 Numerical methods and the C language, Winter and Spring 2016

Workshop 3

Exercise 3 FILE: h03.tex printed on November 20, 2015at 11.03.

1. Make functions which generate random upper and lower triangular matrices and functions which solve an upper and lower triangular system of equations, $\mathrm{Ux}=\mathrm{b}$ and $\mathrm{L} x=\mathrm{b}$ respectively. These solvers (usolve and lsolve) should take as an argument an upper or respectively a lower triangular matrix as well a constant vector b. Solve the systems for random matrices and for a randomly generated vector b.
2. For random numbers c_{0}, \ldots, c_{4} and fixed $a, b \in R, a<b$, compute the value of the integral

$$
I(a, b)=\int_{a}^{b} \sum_{j=0}^{4} c_{j} x^{j} d x
$$

(a) analytically, (b) numerically with the following trapezoidal formula. Let $f(x)=$ $\sum_{j=0}^{4} c_{j} x^{j}, n \in N, h=(b-a) / n$ and $x_{k}=a+k h, k=0, \ldots, n$. Then

$$
I(a, b) \approx I(a, b, n)=h \sum_{k=1}^{n}\left[\frac{1}{2} f\left(x_{k-1}\right)+\frac{1}{2} f\left(x_{k}\right)\right]=h \sum_{k=0}^{n} f\left(x_{k}\right)-\frac{h}{2}\left(f\left(x_{0}\right)+f\left(x_{n}\right)\right)
$$

Print the results for $n=10,100, \ldots$ in the form

n	$\mathrm{I}(\mathrm{a}, \mathrm{b}, \mathrm{n})$	$\|I(\mathrm{a}, \mathrm{b}, \mathrm{n})-\mathrm{I}(\mathrm{a}, \mathrm{b})\|$	$\mathrm{h} * \mathrm{~h}$
10	\ldots	\ldots	\ldots
100	\ldots	\ldots	\ldots
1000	\ldots	\ldots	\ldots

3. Is the diagonal dominance of a square matrix preserved under the multiplication of two such matrices? Is the inverse of a diagonally dominating matrix diagonally dominating? Is the inverse of a tridiagonal matrix tridiagonal? Remember that a square $n \times n$ matrix $A=$ $\left(a_{i j}\right)$ is diagonally dominating if $\left|a_{i, i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i, j}\right|$ for all $i=1, \ldots, n$ and tridiagonal if $a_{i, j}=0$ for $|i-j|>1$.
4. At the youthful age of 103 years L. Vietoris (1891-2002) proved in 1994 the following result (Notices of AMS Nov. 2002).

Theorem. Let $a_{0} \geq a_{1} \geq \ldots \geq a_{n}>0$. If $a_{2 k} \leq \frac{2 k-1}{2 k} a_{2 k-1}$ for $1 \leq k \leq \frac{n}{2}$, then for all $t \in(0, \pi)$

$$
f_{1}(t) \equiv \sum_{k=1}^{n} a_{k} \sin k t>0, \text { and } f_{2}(t) \equiv \sum_{k=0}^{n} a_{k} \cos k t>0 .
$$

Verify these inequalities by generating random sequences of the coefficients satisfying these constraints and by graphing the functions f_{1}, f_{2}.
5. For real $n \times n$ matrices A with eigenvalues λ_{i} show that the following results hold

$$
\operatorname{tr}(A) \equiv \sum_{i=1}^{n} a_{i, i}=\sum_{i=1}^{n} \lambda_{i}, \quad \operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i} .
$$

Use the program myeigen.cpp (www-page/Chapter 11) to verify this experimentally. If you are using GSL, it is sufficient to study symmetric matrices only.

