UH/ Department of Mathematics and Statistics Introduction to mathematical finance I, spring 2016 Exercise -1 (28.1.2016)

Notation: $\mathbb{R}_+ = [0, \infty)$.

1. Let V be a vector space, for example $V = \mathbb{R}^d$. A set $\mathcal{C} \subseteq V$ is convex if and only if

$$x, y \in \mathcal{C}, \ 0 \le \alpha \le 1 \Longrightarrow \alpha x + (1 - \alpha)y \in \mathcal{C}$$

Show that for $n \in \mathbb{N}$,

$$x_i \in \mathcal{C}, \ \alpha_i \ge 0, i = 1, \dots, n \text{ and } \sum_{i=1}^n \alpha_i = 1,$$

 $\implies \sum_{i=1}^n \alpha_i x_i \in \mathcal{C}$

2. Farkas' lemma

Let A be a $(d \times n)$ matrix, and $b = (b_1, \dots, b_d) \in \mathbb{R}^d$. Either of these two alternatives always holds:

- (a) There is $x = (x_1, \ldots, x_n)^\top \in \mathbb{R}^n_+$ such that $j = 1, \ldots, n$ jolla Ax = b
- (b) There is $y = (y_1, \ldots, y_d) \in \mathbb{R}^d$ such that $yA \in \mathbb{R}^d_+$ and $b \cdot y < 0$.

Prove Farkas' lemma by using the separating hyperplane theorem.

Hint Think about the geometry of the problem: if $a_1, \ldots, a_n \in \mathbb{R}^d$ are the column vectors of the matrix A, you can show that

$$\mathcal{C} = \left\{ \sum_{i=1}^{n} \alpha_i a_i : \alpha_i \in \mathbb{R}_+ \right\} \subseteq \mathbb{R}^d$$

which is the convex cone generated by the vectors a_1, \ldots, a_n , is actually convex and closed in \mathbb{R}^d .

and the alternatives (a) and (b) correspond to the cases where $b \in C$ and $b \notin C$, respectively.

3. Prove Gordon theorem: for a matrix $A \in \mathbb{R}^{d \times n}$, either Ax > 0 for some $x \in \mathbb{R}^n$, ($r = (r_1, \ldots, r_d) > 0$ means $r_i > 0 \forall i$), or yA = 0 for some $y \in \mathbb{R}^d_+ \setminus \{ 0 \}$.

website	a	b	с	d	е	f	g
Barcelona wins	1.85	1.80	1.95	1.80	1.85	1.85	1.75
Manchester City wins	4.30	4.55	4.35	4.30	4.55	4.60	4.70
Draw	3.50	3.55	3.35	3.70	3.30	3.45	3.55

Table 1:	gambling	multipliers
Table 1.	gamoning	muniphers

- 4. A betting-website offers the following multiplier coefficients for the football game Barcelona-Manchester City: 1.85 for a Barcelona win, 4.3 for a Manchester city win, 3.5 for a draw, Is this pricing system arbitrage free ? Is it possible for a gambler to construct an arbitrage strategy with non-negative bets (without short positions?)
- 5. Table (1) shows the coefficients for Barcelona-Manchester-City game offered by 7 different gambling websites:

Check whether a gambler can find an arbitrage possibility with non-negative bets (without short positions) by using the highest multipliers offered for each result.