## UH/ Department of Mathematics and Statistics

Introduction to mathematical finance I, spring 2016
Exercise -1 (28.1.2016)
Notation: $\mathbb{R}_{+}=[0, \infty)$.

1. Let $V$ be a vector space, for example $V=\mathbb{R}^{d}$. A set $\mathcal{C} \subseteq V$ is convex if and only if

$$
x, y \in \mathcal{C}, 0 \leq \alpha \leq 1 \Longrightarrow \alpha x+(1-\alpha) y \in \mathcal{C}
$$

Show that for $n \in \mathbb{N}$,

$$
\begin{aligned}
& x_{i} \in \mathcal{C}, \alpha_{i} \geq 0, i=1, \ldots, n \text { and } \sum_{i=1}^{n} \alpha_{i}=1, \\
& \Longrightarrow \sum_{i=1}^{n} \alpha_{i} x_{i} \in \mathcal{C}
\end{aligned}
$$

2. Farkas' lemma

Let $A$ be a $(d \times n)$ matrix, and $b=\left(b_{1}, \ldots, b_{d}\right) \in \mathbb{R}^{d}$.
Either of these two alternatives always holds:
(a) There is $x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{R}_{+}^{n}$ such that $j=1, \ldots, n$ jolla $A x=b$
(b) There is $y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$ such that $y A \in \mathbb{R}_{+}^{d}$ and $b \cdot y<0$.

Prove Farkas' lemma by using the separating hyperplane theorem.
Hint Think about the geometry of the problem: if $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ are the column vectors of the matrix $A$, you can show that

$$
\mathcal{C}=\left\{\sum_{i=1}^{n} \alpha_{i} a_{i}: \alpha_{i} \in \mathbb{R}_{+}\right\} \subseteq \mathbb{R}^{d}
$$

which is the convex cone generated by the vectors $a_{1}, \ldots, a_{n}$, is actually convex and closed in $\mathbb{R}^{d}$.
and the alternatives (a) and (b) correspond to the cases where $b \in \mathcal{C}$ and $b \notin \mathcal{C}$, respectively.
3. Prove Gordon theorem: for a matrix $A \in \mathbb{R}^{d \times n}$, either $A x>0$ for some $x \in \mathbb{R}^{n},\left(r=\left(r_{1}, \ldots, r_{d}\right)>0\right.$ means $\left.r_{i}>0 \forall i\right)$, or $y A=0$ for some $y \in \mathbb{R}_{+}^{d} \backslash\{0\}$.

| website | a | b | c | d | e | f | g |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Barcelona wins | 1.85 | 1.80 | 1.95 | 1.80 | 1.85 | 1.85 | 1.75 |
| Manchester City wins | 4.30 | 4.55 | 4.35 | 4.30 | 4.55 | 4.60 | 4.70 |
| Draw | 3.50 | 3.55 | 3.35 | 3.70 | 3.30 | 3.45 | 3.55 |

Table 1: gambling multipliers
4. A betting-website offers the following multiplier coefficients for the football game Barcelona-Manchester City: 1.85 for a Barcelona win, 4.3 for a Manchester city win, 3.5 for a draw, Is this pricing system arbitrage free ? Is it possible for a gambler to construct an arbitrage strategy with non-negative bets (without short positions?)
5. Table (1) shows the coefficients for Barcelona-Manchester-City game offered by 7 different gambling websites:

Check whether a gambler can find an arbitrage possibility with non-negative bets (without short positions) by using the highest multipliers offered for each result.

