UH Introduction to mathematical finance I, Exercise-5 (24.02.2016)

In all the exercises we consider random variables defined on a probability space (Ω, \mathcal{F}) equipped with a probability measure \mathbb{P} and a filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$, where $\mathcal{F}_s \subseteq \mathcal{F}_t$ for $s \leq t$.

Recall that a stochastic process $(M_t : t \in \mathbb{N})$ is a (P, \mathbb{F}) -martingale if $M_t \in L^1(\Omega, \mathcal{F}_t, P) \ \forall t \in \mathbb{N}$ and $E_P(M_t | \mathcal{F}_{t-1}) = M_{t-1} \ \forall t \geq 1$.

1. Let $W_1 \sim \mathcal{N}(0, 1)$ be a standard Gaussian random variable with $E_P(W_1) = 0$ and $E_P(W^2) = 1$. Recall that $E_P(\exp(\theta W_1)) = \exp(\theta^2/2)$. Consider a market model $(S_t, B_t : t \in \{0, 1\})$ where $B_0 = S_0 = 1$, $B_t = B_0(1+r)$, r > -1 is deterministic.

and

$$S_1 = S_0 \exp(\sigma W_1 + \mu - \frac{\sigma^2}{2})$$

Determine a risk neutral measure $Q \sim P$ sucj that W_1 is Gaussian also under Q.

Hint : try a measure Q^{θ} with likelihood ratio (Radon-Nikodym derivative) $\frac{dQ^{\theta}}{dP} = \zeta_1(\theta) = \exp(\theta W_1)$, and show that with respect to $Q^{\theta} W_1$ is also Gaussian, and compute for wich θ value Q^{θ} is risk-neutral.

- 2. Compute the set of arbitrage free prices for the european call and put options $(S_1 K)^+$ ja $(K S_1)^+$, and compute the cheapest supendging strategy and the most expansive subhedging strategy.
- 3. On a probability space (Ω, \mathcal{F}, P) equipped with a filtration $F = (\mathcal{F}_t : t \in \mathbb{N}), \Delta W_t(\omega) \ t = 1, \ldots, T$ standard Gaussian random variables and let $W_t = W_1 + W_2 + \cdots + W_t$. Under $P \ S_t$ is Gaussian with $E_P(S_t) = 0$ and variance $E_P(S_t^2) = t$. We assume that W_t is \mathcal{F}_t -measurable and ΔW_t is P-independent from the σ -algebra \mathcal{F}_{t-1} . Let $(S_t, B_t : t \in \{0, 1\})$ be a market model where $B_0 = S_0 = 1, \ B_t = B_{t-1}(1 + r_t), \ r_t > -1$ is deterministic,

and
$$S_t = S_0 \exp\left(\sum_{u=1}^t \sigma_u \Delta W_u + \sum_{u=1}^t (\mu_u - \frac{\sigma_u^2}{2})\right)$$

(a) Construct a risk-neutral measure Q under which ΔW_t are Gaussian with ΔW_t is Q-independent from the σ -algebrasta \mathcal{F}_{t-1} .

Hint Construct a likelihood process Z_t with product form, where $Z_0 = 1$ and

$$Z_t = Z_1 \frac{Z_2}{Z_1} \frac{Z_2}{Z_1} \frac{Z_t}{Z_{t-1}} = \zeta_1 \zeta_2 \times \cdots \times \zeta_t,$$

such that $Z_t(\omega) \ge 0$, $E_P(Z_t) = 1$ and $E_Q(S_T | \mathcal{F}_{t-1}) = S_t \frac{B_t}{B_T}$. Use Bayes formula

$$E_Q(S_t|\mathcal{F}_{t-1}) = E_Q(S_t|\mathcal{F}_{t-1}) = \frac{E_P(S_tZ_t|\mathcal{F}_{t-1})}{E_P(Z_t|\mathcal{F}_{t-1})}$$

- (b) What happens if $\mu_t, \sigma_t r_t$ are \mathbb{F} -predictable but not deterministic, , is Q riskineutral also in this more general case?
- (c) Assuming that $\forall t, \mu_t = \mu, \sigma_t = \sigma \ r_t = r$ are determinic constants, for t < T, use the riskneutral measure Q as a pricing measure and compute the corresponding arbitrage-free prices $c_{\text{call}} \frac{B_t}{B_T} E_Q((S_T - K)^+ | \mathcal{F}_t)$ ja $c_{\text{put}} E_Q((K - S_T)^+ | \mathcal{F}_t)$ for the european call- and putoptions $(S_T - K)^+$ ja $(K - S_T)^+$ (Black and Scholes formulae). This market is incomplete, and these european options are not replicable, the arbitrage free prices are not unique, since the riskneutral martingale measure is not unique.
- 4. Let Y_1, \ldots, Y_T binary random variables with $P(Y_t = 1 | \mathcal{F}_{t-1}) = 1 P(Y_t = 0 | \mathcal{F}_{t-1}) = p_t(\omega) \in (0, 1)$. We assume that Y_t on \mathcal{F} -measurable and $p_t(\omega)$ is \mathcal{F}_{t-1} -measurable, $\forall t = 1, \ldots, T$.

In the market model $(B_t, S_t, X_t : t = 0, 1, ..., T)$ the dynamics of these financial instruments is the following: $B_0 = S_0 = X_0 = 1$. and

$$B_t = B_{t-1}(1+r_t), S_t = S_{t-1}(1+u_t)^{Y_t}(1+d_t)^{1-Y_t}, X_t = X_{t-1}(1+d_t)^{Y_t}(1+u_t)^{1-Y_t},$$

where $-1 < d_t(\omega) < r_t(\omega) < u_t(\omega)$ are \mathbb{F} -predictable processes.

- (a) Compute a risk-neutral martingale measure for this market.Hint Construct a likelihood process of product form.
- (b) Assuming that $u_t = u, d_t = d, r_t = r, p_t = p$ where $-1 < d_t < r_t < u_t$ and $p \in (0, 1)$ are deterministic constants, for $t \leq T$ compute the arbitrage free price $c(\text{swap}) = \frac{B_t}{B_T} E_P((S_T X_T)^+ | \mathcal{F}_t)$ of the swap-option $(S_T X_T)^+$.
- 5. Let $(X_t : t \in \mathbb{N})$ independent and identically distributed random variables with $P(X_t = 1) = 1 P(X_t = -1) = p = 1/2$, and $S_t = X_1 + X_2 + \cdots + X_t$. For a < 0 < b, where $a, b \in \mathbb{Z}$, consider the random time

$$\tau(\omega) = \inf \{ t \in \mathbb{N} : S_t(\omega) \notin (a, b) \}.$$

- (a) Show that $\tau(\omega)$ is a stopping time in the filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$ jossa $\mathcal{F}_t = \sigma(S_u : u \leq t) = \sigma(X_u : u \leq t).$
- (b) Show that S_t is a \mathbb{F} -martingale and it is square integrable $E(S_t^2) < \infty \quad \forall t$.
- (c) Show that the stopped process $(S_{t\wedge\tau}: t\in\mathbb{N})$ is a martingale.
- (d) Show that $P(\tau < \infty) = 1$. Hint: you can use the second Borel Cantelli lemma.
- (e) Compute $P(S_{\tau} = a)$ and $P(S_{\tau} = b)$. Hint: show that $S_{t \wedge \tau}$
- (f) Show that the martingale S_t has \mathbb{F} -predictable variation $\langle S \rangle_t = t$ which by definition means that

$$M_t := S_t^2 - t$$

is a \mathbb{F} -martingale.

(g) Show that $E(\tau) < \infty$. hint: $(M_{t \wedge \tau} : t \in \mathbb{N})$ is a martingale, and we have the upper and lower bounds

$$0 \le n \land \tau = S_{n \land \tau}^2 - M_{n \land \tau}, \text{ where } S_t^2 \le \max\{a^2, b^2\} \forall t \qquad (0.1)$$

use Fatou lemma for $n \to \infty$.

(h) Compute the expectation $E(\tau)$. Hint compute $E(S_{\tau}^2)$, and take the expectation in (0.1), and use monotone convergence theorem and Lebesgue dominated convergence theorem.