UH Introduction to mathematical finance I, Exercise-4 (17.02.2016)

In all the exercises we consider random variables defined on a probability space (Ω, \mathcal{F}) equipped with a probability measure \mathbb{P} and a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right.$: $t \in \mathbb{N}$), where $\mathcal{F}_{s} \subseteq \mathcal{F}_{t}$ for $s \leq t$.

Recall that a stochastic process $\left(M_{t}: t \in \mathbb{N}\right)$ is a (P, \mathbb{F})-martingale if $M_{t} \in$ $L^{1}\left(\Omega, \mathcal{F}_{t}, P\right) \forall t \in \mathbb{N}$ and $E_{P}\left(M_{t} \mid \mathcal{F}_{t-1}\right)=M_{t-1} \forall t \geq 1$.

1. Prove: if M_{t} is a (P, \mathbb{F})-martingale, then $E_{P}\left(M_{t}\right)=E_{P}\left(M_{0}\right) \forall t \in \mathbb{N}$.

Solution: Obvious by iteration of the martingale property.
2. Prove the following lemma

If $\left(M_{t}(\omega): t \in \mathbb{N}\right)$ is a (\mathbb{F}, P)-martingale which is also $\left\{\mathcal{F}_{t}\right\}$-predictable, meaning that $\forall t>0 M_{t}(\omega)$ on \mathcal{F}_{t-1}-measureable, then it must be a random constant: $M_{t}(\omega)=M_{0}(\omega) \quad \forall t \in \mathbb{N}$, where $M_{0}(\omega)$ is \mathcal{F}_{0}-measurable.
Solution: Since $M_{t}(\omega)$ is \mathcal{F}_{t-1}-measurable, then $M_{t}=E_{P}\left(M_{t} \mid \mathcal{F}_{t-1}\right)=$ M_{t-1}. The claim follows by iteration.
3. Let $\mathbb{G}=\left(\mathcal{G}_{t}: t \in \mathbb{N}\right)$ be a smaller filtration, such that $\mathcal{G}_{t} \subseteq \mathcal{F}_{t} \forall t \in \mathbb{N}$. Show that if M_{t} if (P, \mathbb{F})-martingale which is \mathbb{G}-adapted, is also a (P, \mathbb{G}) martingale.
Solution: If M_{t} is a (P, \mathbb{F})-martingale, then $M_{t} \in L^{1}(\Omega, P, \mathbb{G})$. By the tower property we have

$$
E_{P}\left(M_{t} \mid \mathcal{G}_{t-1}\right)=E_{P}\left(E_{P}\left(M_{t} \mid \mathcal{F}_{t-1}\right) \mid \mathcal{G}_{t-1}\right)=E_{P}\left(M_{t-1} \mid \mathcal{F}_{t-1}\right)=M_{t-1}
$$

4. Prove the following lemma: Let $\mathcal{G} \subset \mathcal{F}$ a sub- σ-algebra, $Y(\omega)$ a \mathcal{G}-measurable random variable and let $X(\omega)$ be P-independent from the σ-algebra \mathcal{G}. For example it could be that $\mathcal{G}=\sigma(Y)$ with $X \stackrel{P}{\Perp} Y$.
For all bounded Borel-measurable functions $f(x, y)$ we have

$$
\begin{aligned}
& E_{P}(f(X, Y) \mid \sigma(Y))(\omega)=\int_{\Omega} f(X(\widetilde{\omega}), Y(\omega)) P(d \widetilde{\omega}) \\
& =\left.\int_{\Omega} f(X(\widetilde{\omega}), y) P(d \widetilde{\omega})\right|_{y=Y(\omega)}=\int_{\mathbb{R}^{d}} f(x, Y(\omega)) P_{X}(d x)
\end{aligned}
$$

where $P_{X}(B)=P(\omega: X(\omega) \in B)$ for every Borel set $B \subseteq \mathbb{R}^{d}$, meaning that we fix the value $Y(\omega)=y$ and integrate the random variable X from the marginal distribution.
Hint: Apply the definition of conditional expectation.
You can start assuming that f has the product form $0 \leq f(x, y)=$ $g(x) h(x)$, with g, h measurable functions. Then we know that jointly measurable functions can be approximated from below by sums of product functions

$$
f_{n}(x, y)=\sum_{k=1}^{n} g_{n}(x) h_{n}(x) \uparrow f(x, y) \quad \forall x, y
$$

and use the monotone convergence theorem.
Solution: Given $f(x, y)$, we decompose it as $f(x, y)=f^{+}(x, y)-f^{-}(x, y)$ where $f^{+}(x, y)=\max (f(x, y), 0)$ and $f^{-}(x, y)=\max (-f(x, y), 0)$, so that both the functions $f^{+}(x, y)$ and $f^{-}(x, y)$ are bounded and non-negative. This means that without loss of generality we can assume $f(x, y)$ to be bounded and non-negative. Furthermore, following the hint, for the momente we also assume that $f(x, y)=g(x) h(y)$. Then we have for any $B \in \sigma(Y)$
$E_{P}\left(f(X, Y) \mathbf{1}_{B}(Y)\right)=E_{P}\left(g(X) h(Y) \mathbf{1}_{B}(Y)\right)=E_{P}(g(X)) E_{P}\left(h(Y) \mathbf{1}_{B}(Y)\right)$
which means that

$$
E_{P}(g(X) h(Y) \mid \sigma(Y))=h(Y(\omega)) E_{P}(g(X))=h(Y(\omega)) \int g(x) P_{X}(d x)
$$

For general $f(x, y)$ in order to get the claim, it's enough to apply the monotone converge theorem as suggested in the hint.
5. Consider an \mathbb{F}-adapted stochastic process $\left(X_{t}\right)_{t \geq 0}$ such that $X_{t} \in L^{1}(P)$ for all $t \geq 0, \Delta X_{t}=X_{t}-X_{t-1}$, and

$$
A_{t}:=\sum_{s=1}^{t} E_{P}\left(\Delta X_{s} \mid \mathcal{F}_{s-1}\right), \quad A_{0}=0
$$

(a) show that $A_{n} \in L^{1}$ and it is $\left\{\mathcal{F}_{t}\right\}$-predictable.

Solution: $A_{t} \in L^{1}(P)$ because $X_{t} \in L^{1}(P)$ and A_{t} is \mathcal{F}_{t}-predictable since $E_{P}\left(\Delta X_{s} \mid \mathcal{F}_{s-1}\right)$ are \mathcal{F}_{t}-predictable for $s=1, \ldots, t$.
(b) show that $M_{n}:=\left(X_{n}-X_{0}-A_{n}\right)$ on $\left(P,\left\{\mathcal{F}_{n}\right\}\right)$-martingale with $M_{0}=0$.
Solution: M_{n} is in $L^{1}(P)$. Moreover,

$$
\begin{aligned}
E_{P}\left(M_{n} \mid \mathcal{F}_{n-1}\right) & =E_{P}\left(X_{n}-X_{0} \mid \mathcal{F}_{n-1}\right)-A_{n-1}-E_{P}\left(\Delta X_{n} \mid \mathcal{F}_{n-1}\right) \\
& =E_{P}\left(X_{n}-X_{0} \mid \mathcal{F}_{n-1}\right)-A_{n-1}-E_{P}\left(X_{n}-X_{n-1} \mid \mathcal{F}_{n-1}\right) \\
& =X_{n-1}-X_{0}-A_{n-1}=M_{n-1}
\end{aligned}
$$

(c) The equation

$$
X_{n}=X_{0}+A_{n}+M_{n}
$$

is the Doob martingale decomposition of $\left(X_{t}\right)$ into martingale and predictable part. Prove that the Doob decomposition is unique: if $\left(M^{\prime}\right)_{n}$ is another $\left(P,\left\{\mathcal{F}_{n}\right\}\right)$-martingali and $\left(A_{n}^{\prime}\right)$ is another \mathbb{F}-predictable process such that $M_{0}^{\prime}=A_{0}^{\prime}=0$ and

$$
X_{n}=X_{0}+A_{n}^{\prime}+M_{n}^{\prime}
$$

it follows that $M=M^{\prime}$ and $A=A^{\prime}$.
Solution: We have necessarily that $A_{n}+M_{n}=A_{n}^{\prime}+M_{n}^{\prime}$ for $n \in$ \mathbb{N}_{+}, then $A_{n}-A_{n}^{\prime}=M_{n}^{\prime}-M_{n}$, which implies that $M^{\prime}{ }_{n}-M_{n}$ is predictable. Since $M_{n}^{\prime}-M_{n}$ a martingale, from exercise 2 we know that $M_{n}^{\prime}-M_{n}=M_{0}^{\prime}-M_{0}=0$, then $M_{n}^{\prime}=M_{n}$ and $A_{n}^{\prime}=A_{n}$ for $n \in \mathbb{N}_{+}$.
(d) Show that when $\left(X_{n}\right)$ is a submartingale (supermartingale, respectively) the predictable part A_{n} in the Doob decomposition A_{n} is non-decreasing (non-increasing respectively).
Solution: When X_{n} is a supermartingale we have $E_{P}\left(X_{n} \mid \mathcal{F}_{n-1}\right) \leq$ X_{n-1}, so that

$$
A_{n}=E_{P}\left(A_{n} \mid \mathcal{F}_{n-1}\right)=E_{P}\left(X_{n}-X_{0}-M_{n} \mid \mathcal{F}_{n-1}\right) \leq X_{n-1}-X_{0}-M_{n-1}=A_{n-1}
$$

so A_{n} is non-increasing. Reversing the inequalities, if X_{n} is a submartingale, then A_{n} is non-decreasing.
6. Let X_{0} and $\left(U_{t}: t \in \mathbb{N}\right) \mathbb{P}$-independent ranbdom variables with U_{t} uniformly distributed on $[0,1]$. Let $f_{t}: \mathbb{R} \times[0,1] \rightarrow \mathbb{R}$ be Borel measurable functions.
We define by induction $X_{t}(\omega)=f_{t}\left(X_{t-1}(\omega), U_{t}(\omega)\right) \forall t \geq 1$.
Let $\mathcal{F}_{t}=\sigma\left(X_{s}: 0 \leq s \leq t\right)$, and $\mathbb{F}=\left(\mathcal{F}_{t}: t \geq 0\right)$.
(a) Show that $X_{t}(\omega)$ is a Markov process, which means

$$
P\left(X_{t} \in B \mid \mathcal{F}_{t-1}\right)(\omega)=P\left(X_{t} \in B \mid \sigma\left(X_{t-1}\right)\right)(\omega)
$$

for all Borel sets B.
Solution: Since U_{t} is independent from X_{t-1}, \ldots, X_{0}, then we have
$E_{P}\left(\mathbf{1}_{B}\left(X_{t}\right)\right)=E_{P}\left(\mathbf{1}_{B}\left(f_{t}\left(X_{t-1}, U_{t}\right)\right)=\int_{0}^{1} d u \mathbf{1}_{B}\left(f_{t}\left(X_{t-1}, u\right)\right) \in \sigma\left(X_{t-1}\right)\right.$.
(b) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded measurable function. Compute the Doob decomposition

$$
g\left(X_{t}\right)=g\left(X_{0}\right)+A_{t}(g)+M_{t}(g)
$$

where $A_{t}(g)$ is \mathbb{F}-predictable and $M_{t}(g)$ is a \mathbb{F}-martingale.
Vihje

$$
g\left(X_{t}\right)=E_{P}\left(g\left(X_{t}\right) \mid \mathcal{F}_{t-1}\right)+\left(g\left(X_{t}\right)-E_{P}\left(g\left(X_{t}\right) \mid \mathcal{F}_{t-1}\right)\right)
$$

where $g\left(X_{t}\right)=g\left(f\left(X_{t-1}, U_{t}\right)\right)$
Solution: We can construct A_{t} by using the standard formula

$$
\begin{aligned}
A_{t} & =\sum_{s=1}^{t} E_{P}\left(g\left(X_{s}\right)-g\left(X_{s-1}\right) \mid \mathcal{F}_{s-1}\right) \\
& =\sum_{s=1}^{t} E_{P}\left(g\left(f\left(X_{s-1}, U_{s}\right)\right)-g\left(X_{s-1}\right) \mid \mathcal{F}_{s-1}\right) \\
& =\sum_{s=1}^{t} E_{P}\left(g\left(f\left(X_{s-1}, U_{s}\right)\right)-g\left(X_{s-1}\right) \mid \sigma\left(X_{s-1}\right)\right) \\
& =\sum_{s=1}^{t} \int_{0}^{1} d u\left[g\left(f\left(X_{s-1}, u\right)\right)-g\left(X_{s-1}\right)\right]
\end{aligned}
$$

then $M_{t}=g\left(X_{t}\right)-g\left(X_{0}\right)-\sum_{s=1}^{t} \int_{0}^{1} d u\left[g\left(f\left(X_{s-1}, u\right)\right)-g\left(X_{s-1}\right)\right]$.
7. Let $Y_{1}(\omega), \ldots, Y_{T}(\omega)$ be P-independent and identically distributed binary random variables with $P\left(Y_{t}=1\right)=1-P\left(Y_{t}=0\right)=p \in(0,1)$.

Consider the canonical probability space $\Omega=\{0,1\}^{T}$ of T-repeated coin tosses with $\omega=\left(\omega_{1}, \ldots, \omega_{T}\right), \omega_{t} \in\{0,1\}$ with the random variables defined as $Y_{t}(\omega)=\omega_{t} \in\{0,1\}$.
Let $X_{t}(\omega)=Y_{1}+Y_{2}+\cdots+Y_{t}$.
(a) Show that X_{t} has $\operatorname{Binomial}(p, t)$ distribution meaning that $P\left(X_{t}=x\right)=\binom{t}{k} p^{x}(1-p)^{t-x}, \quad$ when $x \in\{0,1,2, \ldots, n\}, P(X=x)=0$ otherwise

Solution: The probability that the first x tosses give 1 and the remaining $t-x$ tosses give 0 is $p^{x}(1-p)^{t-x}$ and in this case $X_{t}=x$. To compute $P\left(X_{t}=x\right)$ we need to count all the possible comfigurations of x "objects" in t "places", which are $\binom{t}{x}$, so that $P\left(X_{t}=x\right)=\binom{t}{x} p^{x}(1-p)^{t-x} \quad$ when $x \in\{0,1,2, \ldots, n\}, \quad P(X=x)=0$ otherwise
(b) Compute the Doob martingale decomposition

$$
X_{t}=X_{0}+M_{t}+A_{t}
$$

for the stochastic process $X_{t}(\omega)$, where $\left(M_{t}\right)$ is a (P, F)-martingale and $\left(A_{t}\right)$ is predictable with respect to the filtration $\mathbb{F}=\left(\mathcal{F}_{t}: t=\right.$ $1, \ldots, T)$ with $\mathcal{F}_{t}=\sigma\left(Y_{1}, \ldots, Y_{r}\right)$.
Solution: We can construct the predictble part as follows

$$
A_{t}=\sum_{s=1}^{t} \mathbb{E}_{P}\left(\Delta X_{s} \mid \mathcal{F}_{s-1}\right)=\sum_{s=1}^{t} \mathbb{E}_{P}\left(Y_{s} \mid \mathcal{F}_{s-1}\right)=\sum_{s=1}^{t} E_{P}\left(Y_{s}\right)=t p
$$

then

$$
M_{t}=X_{t}-X_{0}-A_{t}
$$

(c) Compute the \mathbb{F}-predictable covariation process $\langle M\rangle_{t}$ such that

$$
M_{t}^{2}-\langle M\rangle_{t}
$$

is a (P, \mathbb{F})-martingale.
Hint Compute the Doob decomposition of the process M_{t}^{2}.
Solution: Given the Doob decomposition of $M_{t}^{2}=N_{t}+B_{t}$ where N_{t} is a (P, \mathbb{F})-martingale and B_{t} is predictable, then necessarily it results that

$$
B_{t}=\left\langle M_{t}\right\rangle
$$

We observe that

$$
\begin{aligned}
M_{t} & =M_{t-1}-\left(M_{t-1}-M_{t}\right)=M_{t-1}+X_{t}-X_{t-1}+A_{t-1}-A_{t} \\
& =M_{t-1}+Y_{t}-p
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left\langle M_{t}\right\rangle=B_{t} & =\sum_{s=1}^{t} E_{P}\left(M_{s}^{2}-M_{s-1}^{2} \mid \mathcal{F}_{s-1}\right)=\sum_{s=1}^{t} E_{P}\left(2\left(Y_{s}-p\right) M_{s-1}+\left(Y_{s}-p\right)^{2} \mid \mathcal{F}_{s-1}\right) \\
& =\sum_{s=1}^{t} 2 M_{s-1} E_{P}\left(Y_{s}-p\right)+E_{P}\left(Y_{s}-p\right)^{2}=t p(1-p)
\end{aligned}
$$

