UH Introduction to mathematical finance I, Exercise-4 (17.02.2016)

In all the exercises we consider random variables defined on a probability space (Ω, \mathcal{F}) equipped with a probability measure \mathbb{P} and a filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$, where $\mathcal{F}_s \subseteq \mathcal{F}_t$ for $s \leq t$.

Recall that a stochastic process $(M_t : t \in \mathbb{N})$ is a (P, \mathbb{F}) -martingale if $M_t \in L^1(\Omega, \mathcal{F}_t, P) \ \forall t \in \mathbb{N}$ and $E_P(M_t | \mathcal{F}_{t-1}) = M_{t-1} \ \forall t \geq 1$.

1. Prove: if M_t is a (P, \mathbb{F}) -martingale, then $E_P(M_t) = E_P(M_0) \ \forall t \in \mathbb{N}$.

Solution: Obvious by iteration of the martingale property.

2. Prove the following lemma

If $(M_t(\omega) : t \in \mathbb{N})$ is a (\mathbb{F}, P) -martingale which is also $\{\mathcal{F}_t\}$ -predictable, meaning that $\forall t > 0$ $M_t(\omega)$ on \mathcal{F}_{t-1} -measureable, then it must be a random constant: $M_t(\omega) = M_0(\omega) \quad \forall t \in \mathbb{N}$, where $M_0(\omega)$ is \mathcal{F}_0 -measurable. **Solution:** Since $M_t(\omega)$ is \mathcal{F}_{t-1} -measurable, then $M_t = E_P(M_t|\mathcal{F}_{t-1}) = M_{t-1}$. The claim follows by iteration.

3. Let $\mathbb{G} = (\mathcal{G}_t : t \in \mathbb{N})$ be a smaller filtration, such that $\mathcal{G}_t \subseteq \mathcal{F}_t \ \forall t \in \mathbb{N}$. Show that if M_t if (P, \mathbb{F}) -martingale which is \mathbb{G} -adapted, is also a (P, \mathbb{G}) -martingale.

Solution: If M_t is a (P, \mathbb{F}) -martingale, then $M_t \in L^1(\Omega, P, \mathbb{G})$. By the tower property we have

$$E_P(M_t|\mathcal{G}_{t-1}) = E_P(E_P(M_t|\mathcal{F}_{t-1})|\mathcal{G}_{t-1}) = E_P(M_{t-1}|\mathcal{F}_{t-1}) = M_{t-1}$$

4. Prove the following lemma: Let $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra, $Y(\omega)$ a \mathcal{G} -measurable random variable and let $X(\omega)$ be P-independent from the σ -algebra \mathcal{G} . For

example it could be that $\mathcal{G} = \sigma(Y)$ with $X \perp^P Y$.

For all bounded Borel-measurable functions f(x, y) we have

$$E_P(f(X,Y)|\sigma(Y))(\omega) = \int_{\Omega} f(X(\widetilde{\omega}),Y(\omega))P(d\widetilde{\omega})$$
$$= \int_{\Omega} f(X(\widetilde{\omega}),y)P(d\widetilde{\omega})\Big|_{y=Y(\omega)} = \int_{\mathbb{R}^d} f(x,Y(\omega))P_X(dx)$$

where $P_X(B) = P(\omega : X(\omega) \in B)$ for every Borel set $B \subseteq \mathbb{R}^d$, meaning that we fix the value $Y(\omega) = y$ and integrate the random variable X from the marginal distribution.

Hint: Apply the definition of conditional expectation.

You can start assuming that f has the product form $0 \leq f(x, y) = g(x)h(x)$, with g, h measurable functions. Then we know that jointly measurable functions can be approximated from below by sums of product functions

$$f_n(x,y) = \sum_{k=1}^n g_n(x)h_n(x) \uparrow f(x,y) \quad \forall x, y$$

and use the monotone convergence theorem.

Solution: Given f(x, y), we decompose it as $f(x, y) = f^+(x, y) - f^-(x, y)$ where $f^+(x, y) = \max(f(x, y), 0)$ and $f^-(x, y) = \max(-f(x, y), 0)$, so that both the functions $f^+(x, y)$ and $f^-(x, y)$ are bounded and non-negative. This means that without loss of generality we can assume f(x, y) to be bounded and non-negative. Furthermore, following the hint, for the momente we also assume that f(x, y) = g(x)h(y). Then we have for any $B \in \sigma(Y)$

$$E_P(f(X,Y)\mathbf{1}_B(Y)) = E_P(g(X)h(Y)\mathbf{1}_B(Y)) = E_P(g(X))E_P(h(Y)\mathbf{1}_B(Y))$$

which means that

$$E_P(g(X)h(Y)|\sigma(Y)) = h(Y(\omega))E_P(g(X)) = h(Y(\omega))\int g(x)P_X(dx).$$

For general f(x, y) in order to get the claim, it's enough to apply the monotone converge theorem as suggested in the hint.

5. Consider an \mathbb{F} -adapted stochastic process $(X_t)_{t\geq 0}$ such that $X_t \in L^1(P)$ for all $t \geq 0$, $\Delta X_t = X_t - X_{t-1}$, and

$$A_t := \sum_{s=1}^{\iota} E_P(\Delta X_s | \mathcal{F}_{s-1}), \quad A_0 = 0$$

- (a) show that $A_n \in L^1$ and it is $\{\mathcal{F}_t\}$ -predictable. **Solution:** $A_t \in L^1(P)$ because $X_t \in L^1(P)$ and A_t is \mathcal{F}_t -predictable since $E_P(\Delta X_s | \mathcal{F}_{s-1})$ are \mathcal{F}_t -predictable for $s = 1, \ldots, t$.
- (b) show that $M_n := (X_n X_0 A_n)$ on $(P, \{\mathcal{F}_n\})$ -martingale with $M_0 = 0$.

Solution: M_n is in $L^1(P)$. Moreover,

$$E_P(M_n|\mathcal{F}_{n-1}) = E_P(X_n - X_0|\mathcal{F}_{n-1}) - A_{n-1} - E_P(\Delta X_n|\mathcal{F}_{n-1})$$

= $E_P(X_n - X_0|\mathcal{F}_{n-1}) - A_{n-1} - E_P(X_n - X_{n-1}|\mathcal{F}_{n-1})$
= $X_{n-1} - X_0 - A_{n-1} = M_{n-1}.$

(c) The equation

$$X_n = X_0 + A_n + M_n$$

is the Doob martingale decomposition of (X_t) into martingale and predictable part. Prove that the Doob decomposition is unique: if $(M')_n$ is another $(P, \{\mathcal{F}_n\})$ -martingali and (A'_n) is another \mathbb{F} -predictable process such that $M'_0 = A'_0 = 0$ and

$$X_n = X_0 + A'_n + M'_n$$

it follows that M = M' and A = A'.

Solution: We have necessarily that $A_n + M_n = A'_n + M'_n$ for $n \in \mathbb{N}_+$, then $A_n - A'_n = M'_n - M_n$, which implies that $M'_n - M_n$ is predictable. Since $M'_n - M_n$ a martingale, from exercise 2 we know that $M'_n - M_n = M'_0 - M_0 = 0$, then $M'_n = M_n$ and $A'_n = A_n$ for $n \in \mathbb{N}_+$.

(d) Show that when (X_n) is a submartingale (supermartingale, respectively) the predictable part A_n in the Doob decomposition A_n is non-decreasing (non-increasing respectively). **Solution:** When X_n is a supermartingale we have $E_P(X_n | \mathcal{F}_{n-1}) \leq X_{n-1}$, so that

$$A_n = E_P(A_n | \mathcal{F}_{n-1}) = E_P(X_n - X_0 - M_n | \mathcal{F}_{n-1}) \le X_{n-1} - X_0 - M_{n-1} = A_{n-1}$$

so A_n is non-increasing. Reversing the inequalities, if X_n is a submartingale, then A_n is non-decreasing.

6. Let X_0 and $(U_t : t \in \mathbb{N})$ \mathbb{P} -independent ranbdom variables with U_t uniformly distributed on [0, 1]. Let $f_t : \mathbb{R} \times [0, 1] \to \mathbb{R}$ be Borel measurable functions.

We define by induction $X_t(\omega) = f_t(X_{t-1}(\omega), U_t(\omega)) \ \forall t \ge 1$. Let $\mathcal{F}_t = \sigma(X_s : 0 \le s \le t)$, and $\mathbb{F} = (\mathcal{F}_t : t \ge 0)$.

(a) Show that $X_t(\omega)$ is a Markov process, which means

$$P(X_t \in B | \mathcal{F}_{t-1})(\omega) = P(X_t \in B | \sigma(X_{t-1}))(\omega)$$

for all Borel sets B.

Solution: Since U_t is independent from X_{t-1}, \ldots, X_0 , then we have

$$E_P(\mathbf{1}_B(X_t)) = E_P(\mathbf{1}_B(f_t(X_{t-1}, U_t))) = \int_0^1 du \, \mathbf{1}_B(f_t(X_{t-1}, u)) \in \sigma(X_{t-1})$$

(b) Let $g:\mathbb{R}\to\mathbb{R}$ be a bounded measurable function. Compute the Doob decomposition

$$g(X_t) = g(X_0) + A_t(g) + M_t(g)$$

where $A_t(g)$ is \mathbb{F} -predictable and $M_t(g)$ is a \mathbb{F} -martingale. Vihje

$$g(X_t) = E_P(g(X_t)|\mathcal{F}_{t-1}) + \left(g(X_t) - E_P(g(X_t)|\mathcal{F}_{t-1})\right)$$

where $g(X_t) = g(f(X_{t-1}, U_t))$

Solution: We can construct A_t by using the standard formula

$$A_{t} = \sum_{s=1}^{t} E_{P}(g(X_{s}) - g(X_{s-1})|\mathcal{F}_{s-1})$$

$$= \sum_{s=1}^{t} E_{P}(g(f(X_{s-1}, U_{s})) - g(X_{s-1})|\mathcal{F}_{s-1})$$

$$= \sum_{s=1}^{t} E_{P}(g(f(X_{s-1}, U_{s})) - g(X_{s-1})|\sigma(X_{s-1}))$$

$$= \sum_{s=1}^{t} \int_{0}^{1} du \left[g(f(X_{s-1}, u)) - g(X_{s-1})\right],$$

then $M_t = g(X_t) - g(X_0) - \sum_{s=1}^t \int_0^1 du \left[g(f(X_{s-1}, u)) - g(X_{s-1}) \right].$

7. Let $Y_1(\omega), \ldots, Y_T(\omega)$ be *P*-independent and identically distributed binary random variables with $P(Y_t = 1) = 1 - P(Y_t = 0) = p \in (0, 1)$.

Consider the canonical probability space $\Omega = \{0, 1\}^T$ of *T*-repeated coin tosses with $\omega = (\omega_1, \ldots, \omega_T)$, $\omega_t \in \{0, 1\}$ with the random variables defined as $Y_t(\omega) = \omega_t \in \{0, 1\}$. Let $X_t(\omega) = Y_1 + Y_2 + \cdots + Y_t$.

(a) Show that X_t has Binomial(p, t) distribution meaning that

$$P(X_t = x) = {t \choose k} p^x (1-p)^{t-x}$$
, when $x \in \{0, 1, 2, \dots, n\}$, $P(X = x) = 0$ otherwise

Solution: The probability that the first x tosses give 1 and the remaining t - x tosses give 0 is $p^x(1-p)^{t-x}$ and in this case $X_t = x$. To compute $P(X_t = x)$ we need to count all the possible comfigurations of x "objects" in t "places", which are $\binom{t}{x}$, so that

$$P(X_t = x) = {\binom{t}{x}} p^x (1-p)^{t-x} \text{ when } x \in \{0, 1, 2, \dots, n\}, P(X = x) = 0 \text{ otherwise}$$

(b) Compute the Doob martingale decomposition

$$X_t = X_0 + M_t + A_t$$

for the stochastic process $X_t(\omega)$, where (M_t) is a (P, F)-martingale and (A_t) is predictable with respect to the filtration $\mathbb{F} = (\mathcal{F}_t : t = 1, \ldots, T)$ with $\mathcal{F}_t = \sigma(Y_1, \ldots, Y_r)$.

Solution: We can construct the predictble part as follows

$$A_{t} = \sum_{s=1}^{t} \mathbb{E}_{P}(\Delta X_{s} | \mathcal{F}_{s-1}) = \sum_{s=1}^{t} \mathbb{E}_{P}(Y_{s} | \mathcal{F}_{s-1}) = \sum_{s=1}^{t} E_{P}(Y_{s}) = tp$$

then

$$M_t = X_t - X_0 - A_t.$$

(c) Compute the \mathbb{F} -predictable covariation process $\langle M \rangle_t$ such that

$$M_t^2 - \langle M \rangle_t$$

is a (P, \mathbb{F}) -martingale.

Hint Compute the Doob decomposition of the process M_t^2 . **Solution:** Given the Doob decomposition of $M_t^2 = N_t + B_t$ where N_t is a (P, \mathbb{F}) -martingale and B_t is predictable, then necessarily it results that

$$B_t = \langle M_t \rangle.$$

We observe that

$$M_t = M_{t-1} - (M_{t-1} - M_t) = M_{t-1} + X_t - X_{t-1} + A_{t-1} - A_t$$

= $M_{t-1} + Y_t - p$

Then we have

$$\langle M_t \rangle = B_t = \sum_{s=1}^t E_P(M_s^2 - M_{s-1}^2 | \mathcal{F}_{s-1}) = \sum_{s=1}^t E_P(2(Y_s - p)M_{s-1} + (Y_s - p)^2 | \mathcal{F}_{s-1})$$

=
$$\sum_{s=1}^t 2M_{s-1}E_P(Y_s - p) + E_P(Y_s - p)^2 = tp(1 - p)$$