
UH Introduction to mathematical finance I, Exercise-6 (02.03.2016)

In all the exercises we consider random variables defined on a probability
space (Ω,F) equipped with a probability measure P and a filtration F = (Ft :
t ∈ N), where Fs ⊆ Ft for s ≤ t.

1. Let be τ(ω) ∈ N and σ(ω) ∈ N stopping times in the filtration F. Show
that τ ∧ σ is also a stopping time. Is their sum τ(ω) + σ(ω) a stopping
time?

Solution: By definition τ(ω) is a stopping if {ω : τ(ω) ≤ t} ∈ Ft, but

{ω : τ(ω) ∧ σ(ω) ≤ t} = {ω : τ(ω) ≤ t} ∩ {ω : σ(ω) ≤ t} ∈ Ft.

Also the sum is a stopping time because

{ω : τ(ω) + σ(ω) ≤ t} = ∪ts=1[{ω : τ(ω) ≤ s} ∪ {ω : σ(ω) ≤ t− s] ∈ Ft

2. Consider the positive sequence Zt > 0 for t ∈ N. Show that

Z−1t = Z−10 −
t∑

u=1

(ZuZu−1)−1∆Zu

Solution: We proceed by induction: the claim is trivial for t = 1 and if
the assume the claim to be true up to t− 1, then we have

Z−10 −
t∑

u=1

(ZuZu−1)−1∆Zu = Z−1t−1 −
Zt − Zt−1
Zt−1Zt

= Z−1t .

3. In the probability space (Ω,F , P ), let be Q � P and Z = dQ/dP ∈
L1(Ω,F , P ). Show that P � Q if and only if Z(ω) > 0 P a.s. and then

dP

dQ
(ω) = Z−1(ω)

Solution: First, let us assume that Q ∼ P and we show that there
exists dQ/dP = Z(ω) > 0 P almst surely. Since Q � P , the Radon-
Nikodym theorem gaurantees that there exists a random variable Z(ω) ∈
L1(Ω,F , P ) such that Q(A) =

∫
A
ZdP for any A ∈ F . We just need to

show that Z > 0 almost surely. To to do this, let be B = {ω : Z(ω) = 0},
then we have

Q(B) =

∫
B

Z(ω)dP = 0,

but since P � Q, then we know that P (B) = 0.

For the other direction, we assume that Q � P and that there Z =
dQ/dP ∈ L1(Ω,F , P ) and Z > 0 almost surely. This implies that for any
A ∈ F

Q(A) =

∫
A

ZdP.
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Now we wnat to show that if Q(A) = 0, then P (A), which menas that
P � Q. In thact, if Q(A) = 0, then 0 =

∫
A
ZdP . But Z > 0 almost surely,

then P (A) = 0.

Therefore, finally

dQ = ZdP ⇐⇒ dP = Z−1dQ.

4. Let be f(x) a continuos function with a continuous derivative and Xt a
discrete time process.

(a) Show the discrete Ito lemma:

f(Xt)− f(X0) =

t∑
s=1

f ′(Xs−1)∆Xs +

t∑
s=1

(f(Xs)− f(Xs−1)− f ′(Xs−1)∆Xs)

=

t∑
s=1

f ′(Xs−1)∆Xs +
1

2

t∑
s=1

∆f ′(Xs)∆Xs +R(f ′, X, t)

where

R(f ′, X, t) =

t∑
s=1

∫ Xs

Xs−1

(
f ′(u)− f ′(Xs−1) + f ′(Xs)

2

)
du (0.1)

Solution: Note that

R(f ′, X, t) =

t∑
s=1

(
∆f ′(Xs)−

∆Xs

2
(f ′(Xs−1) + f ′(Xs))

)
,

then by rearranging the terms

f(Xt)− f(X0) =

t∑
s=1

f ′(Xs−1)∆Xs +

t∑
s=1

(∆f(Xs)− f ′(Xs−1)∆Xs)

=

t∑
s=1

f ′(Xs−1)∆Xs +

t∑
s=1

∆Xs

2
(f ′(Xs)− f ′(Xs−1)) +R(f ′, X, t)

=

t∑
s=1

f ′(Xs−1)∆Xs +
1

2

t∑
s=1

∆f ′(Xs)∆Xs +R(f ′, X, t)

(b) Show that, if Xt is a F-martingale and f is convex and has bounded
derivative, then f(Xt) is a submartingale.
Solution: Let be |f ′(x)| ≤ K, then, since Xt is a martingale, Xt ∈
L1 and thus E|f(Xt)| ≤ E|f(X0)| + CKt(1 + supu≤t E|Xu|) < ∞.
Moreover,

E[f(Xt)|Ft−1] = f(Xt−1) +
1

2
E[∆f ′(Xt)∆Xt|Ft−1] + E[∆f ′(Xt)|Ft−1]− E[

∆Xt

2
f ′(Xt)|Ft−1]

= f(Xt−1) +
1

2
E[f ′(Xt−1)∆Xt|Ft−1] + E[∆f ′(Xt)|Ft−1]

= f(Xt−1) + E[∆f ′(Xt)|Ft−1] ≥ f(Xt−1)
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where in the last line we used the convexity of f . We note that a more
direct way of proving the claim is by using the Jensen inequality:

E[f(Xt)|Ft−1] ≥ f(E[Xt|Ft−1]) = f(Xt).

(c) Show that if f ′′ is α-Hölder continuous, i.e. if there exists α ∈ (0, 1]
and C > 0 such that |f ′′(x)− f ′′(y)| ≤ C|x− y|α, then

|R(f ′, X, t)| ≤ const
t∑

s=1

|∆Xs|2 max{|∆Xs|α : 1 ≤ s ≤ t}

Solution: We will use the trapezoidal rule which says that∫ b

a

dx |g(x)− 1

2
(g(a) + g(b))| ≤ C|b− a|2 sup

y1,y2∈(a,b)
|g′(y1)− g′(y2)|

To show this formula, let us consider the approximating polynomial
P (x) defined as

P (x) = −x− b
h

g(a) +
x− a
h

g(b)

where h = b− a, then one has by the mean value theorem

g(x)−P (x) =
x− b
h

(g(a)−g(x))+
x− a
h

(g(x)−g(b)) =
(x− b)(x− a)

h
(g′(x1)−g′(x2))

where x1 ∈ (a, x) and x2 ∈ (x, b). This implies that∫ b

a

dx|g(x)− P (x)| ≤ h2 sup
y1,y2∈(a,b)

|g′(y1)− g′(y2)|

Using the representation (0.1), the trapezoidal formula and the Höl-
der inequality we immediately have

|R(f ′, X, t)| ≤ C
t∑

s=1

|∆Xs|2 sup
x,y∈(Xs−1,Xs)

|f ′′(x)− f ′′(y)|

≤ C max
s≤t
{|∆Xs|α}

t∑
s=1

|∆Xs|2.

5. Let be Xt =
∑t
s=1 ∆Xs a random path process where ∆Xs ∈ {−1,+1}

and f(x) = |x− x0| with x0 ∈ R. Then

f ′(x) = sign(x− x0) =


1 if x > x0

0 if x = x0

−1 if x < x0

Define

Lx0
t =

t∑
s=1

1(Xs−1 = x0).

3



Show the discrete Takana’s lemma:

|Xt − x0| = Lx0
t +

t∑
s=1

sign(Xt − x0)∆Xs.

Solution: Let us use the decomposition

f(Xt)− f(X0) =

t∑
s=1

f ′(Xs−1)∆Xs +

t∑
s=1

[f(Xs)− f(Xs−1)− f ′(Xs−1)∆Xs]

(0.2)

so that

|Xt − x0| =
t∑

s=1

sign(Xs−1 − x0)∆Xs +

t∑
s=1

[|Xs − x0| − |Xs−1 − x0| − sign(Xs−1 − x0)∆Xs].

(0.3)

Let us now look at the second term and split its summands as follows:

[|Xs − x0| − |Xs−1 − x0| − sign(Xs−1 − x0)∆Xs]1(Xs−1 = x0) (0.4)
+ [|Xs − x0| − |Xs−1 − x0| − sign(Xs−1 − x0)∆Xs]1(Xs−1 > x0)

+ [|Xs − x0| − |Xs−1 − x0| − sign(Xs−1 − x0)∆Xs]1(Xs−1 < x0)

= |∆Xs|1(Xs−1 = x0)

+ (Xs − x0 −Xs−1 + x0 −∆Xs)1(Xs−1 > x0)

+ (−Xs + x0 +Xs−1 − x0 + ∆Xs)1(Xs−1 < x0)

= |∆Xs|1(Xs−1 = x0) = 1(Xs−1 = x0),

therefore we have

|Xt − x0| =
t∑

s=1

sign(Xt − x0)∆Xs +

t∑
s=1

1(Xs−1 = x0).
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