UH Introduction to mathematical finance I, Exercise-6 (02.03.2016)

In all the exercises we consider random variables defined on a probability space (Ω, \mathcal{F}) equipped with a probability measure \mathbb{P} and a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right.$: $t \in \mathbb{N}$), where $\mathcal{F}_{s} \subseteq \mathcal{F}_{t}$ for $s \leq t$.

1. Let be $\tau(\omega) \in \mathbb{N}$ and $\sigma(\omega) \in \mathbb{N}$ stopping times in the filtration \mathbb{F}. Show that $\tau \wedge \sigma$ is also a stopping time. Is their sum $\tau(\omega)+\sigma(\omega)$ a stopping time?

Solution: By definition $\tau(\omega)$ is a stopping if $\{\omega: \tau(\omega) \leq t\} \in \mathcal{F}_{t}$, but

$$
\{\omega: \tau(\omega) \wedge \sigma(\omega) \leq t\}=\{\omega: \tau(\omega) \leq t\} \cap\{\omega: \sigma(\omega) \leq t\} \in \mathcal{F}_{t}
$$

Also the sum is a stopping time because

$$
\{\omega: \tau(\omega)+\sigma(\omega) \leq t\}=\cup_{s=1}^{t}\left[\{\omega: \tau(\omega) \leq s\} \cup\{\omega: \sigma(\omega) \leq t-s] \in \mathcal{F}_{t}\right.
$$

2. Consider the positive sequence $Z_{t}>0$ for $t \in \mathbb{N}$. Show that

$$
Z_{t}^{-1}=Z_{0}^{-1}-\sum_{u=1}^{t}\left(Z_{u} Z_{u-1}\right)^{-1} \Delta Z_{u}
$$

Solution: We proceed by induction: the claim is trivial for $t=1$ and if the assume the claim to be true up to $t-1$, then we have

$$
Z_{0}^{-1}-\sum_{u=1}^{t}\left(Z_{u} Z_{u-1}\right)^{-1} \Delta Z_{u}=Z_{t-1}^{-1}-\frac{Z_{t}-Z_{t-1}}{Z_{t-1} Z_{t}}=Z_{t}^{-1}
$$

3. In the probability space (Ω, \mathcal{F}, P), let be $Q \ll P$ and $Z=d Q / d P \in$ $L^{1}(\Omega, \mathcal{F}, P)$. Show that $P \ll Q$ if and only if $Z(\omega)>0 P$ a.s. and then

$$
\frac{d P}{d Q}(\omega)=Z^{-1}(\omega)
$$

Solution: First, let us assume that $Q \sim P$ and we show that there exists $d Q / d P=Z(\omega)>0 P$ almst surely. Since $Q \ll P$, the RadonNikodym theorem gaurantees that there exists a random variable $Z(\omega) \in$ $L^{1}(\Omega, \mathcal{F}, P)$ such that $Q(A)=\int_{A} Z d P$ for any $A \in \mathcal{F}$. We just need to show that $Z>0$ almost surely. To to do this, let be $B=\{\omega: Z(\omega)=0\}$, then we have

$$
Q(B)=\int_{B} Z(\omega) d P=0
$$

but since $P \ll Q$, then we know that $P(B)=0$.
For the other direction, we assume that $Q \ll P$ and that there $Z=$ $d Q / d P \in L^{1}(\Omega, \mathcal{F}, P)$ and $Z>0$ almost surely. This implies that for any $A \in \mathcal{F}$

$$
Q(A)=\int_{A} Z d P
$$

Now we wnat to show that if $Q(A)=0$, then $P(A)$, which menas that $P \ll Q$. In thact, if $Q(A)=0$, then $0=\int_{A} Z d P$. But $Z>0$ almost surely, then $P(A)=0$.
Therefore, finally

$$
d Q=Z d P \Longleftrightarrow d P=Z^{-1} d Q
$$

4. Let be $f(x)$ a continuos function with a continuous derivative and X_{t} a discrete time process.
(a) Show the discrete Ito lemma:

$$
\begin{aligned}
f\left(X_{t}\right)-f\left(X_{0}\right) & =\sum_{s=1}^{t} f^{\prime}\left(X_{s-1}\right) \Delta X_{s}+\sum_{s=1}^{t}\left(f\left(X_{s}\right)-f\left(X_{s-1}\right)-f^{\prime}\left(X_{s-1}\right) \Delta X_{s}\right) \\
& =\sum_{s=1}^{t} f^{\prime}\left(X_{s-1}\right) \Delta X_{s}+\frac{1}{2} \sum_{s=1}^{t} \Delta f^{\prime}\left(X_{s}\right) \Delta X_{s}+R\left(f^{\prime}, X, t\right)
\end{aligned}
$$

where

$$
\begin{equation*}
R\left(f^{\prime}, X, t\right)=\sum_{s=1}^{t} \int_{X_{s-1}}^{X_{s}}\left(f^{\prime}(u)-\frac{f^{\prime}\left(X_{s-1}\right)+f^{\prime}\left(X_{s}\right)}{2}\right) d u \tag{0.1}
\end{equation*}
$$

Solution: Note that

$$
R\left(f^{\prime}, X, t\right)=\sum_{s=1}^{t}\left(\Delta f^{\prime}\left(X_{s}\right)-\frac{\Delta X_{s}}{2}\left(f^{\prime}\left(X_{s-1}\right)+f^{\prime}\left(X_{s}\right)\right)\right)
$$

then by rearranging the terms

$$
\begin{aligned}
f\left(X_{t}\right)-f\left(X_{0}\right) & =\sum_{s=1}^{t} f^{\prime}\left(X_{s-1}\right) \Delta X_{s}+\sum_{s=1}^{t}\left(\Delta f\left(X_{s}\right)-f^{\prime}\left(X_{s-1}\right) \Delta X_{s}\right) \\
& =\sum_{s=1}^{t} f^{\prime}\left(X_{s-1}\right) \Delta X_{s}+\sum_{s=1}^{t} \frac{\Delta X_{s}}{2}\left(f^{\prime}\left(X_{s}\right)-f^{\prime}\left(X_{s-1}\right)\right)+R\left(f^{\prime}, X, t\right) \\
& =\sum_{s=1}^{t} f^{\prime}\left(X_{s-1}\right) \Delta X_{s}+\frac{1}{2} \sum_{s=1}^{t} \Delta f^{\prime}\left(X_{s}\right) \Delta X_{s}+R\left(f^{\prime}, X, t\right)
\end{aligned}
$$

(b) Show that, if X_{t} is a \mathbb{F}-martingale and f is convex and has bounded derivative, then $f\left(X_{t}\right)$ is a submartingale.
Solution: Let be $\left|f^{\prime}(x)\right| \leq K$, then, since X_{t} is a martingale, $X_{t} \in$ L^{1} and thus $\mathbb{E}\left|f\left(X_{t}\right)\right| \leq \mathbb{E}\left|f\left(X_{0}\right)\right|+C K t\left(1+\sup _{u \leq t} \mathbb{E}\left|X_{u}\right|\right)<\infty$. Moreover,

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t}\right) \mid \mathcal{F}_{t-1}\right] & =f\left(X_{t-1}\right)+\frac{1}{2} \mathbb{E}\left[\Delta f^{\prime}\left(X_{t}\right) \Delta X_{t} \mid \mathcal{F}_{t-1}\right]+\mathbb{E}\left[\Delta f^{\prime}\left(X_{t}\right) \mid \mathcal{F}_{t-1}\right]-\mathbb{E}\left[\left.\frac{\Delta X_{t}}{2} f^{\prime}\left(X_{t}\right) \right\rvert\, \mathcal{F}_{t-1}\right] \\
& =f\left(X_{t-1}\right)+\frac{1}{2} \mathbb{E}\left[f^{\prime}\left(X_{t-1}\right) \Delta X_{t} \mid \mathcal{F}_{t-1}\right]+\mathbb{E}\left[\Delta f^{\prime}\left(X_{t}\right) \mid \mathcal{F}_{t-1}\right] \\
& =f\left(X_{t-1}\right)+\mathbb{E}\left[\Delta f^{\prime}\left(X_{t}\right) \mid \mathcal{F}_{t-1}\right] \geq f\left(X_{t-1}\right)
\end{aligned}
$$

where in the last line we used the convexity of f. We note that a more direct way of proving the claim is by using the Jensen inequality:

$$
\mathbb{E}\left[f\left(X_{t}\right) \mid \mathcal{F}_{t-1}\right] \geq f\left(\mathbb{E}\left[X_{t} \mid \mathcal{F}_{t-1}\right]\right)=f\left(X_{t}\right)
$$

(c) Show that if $f^{\prime \prime}$ is α-Hölder continuous, i.e. if there exists $\alpha \in(0,1]$ and $C>0$ such that $\left|f^{\prime \prime}(x)-f^{\prime \prime}(y)\right| \leq C|x-y|^{\alpha}$, then

$$
\left|R\left(f^{\prime}, X, t\right)\right| \leq \text { const } \sum_{s=1}^{t}\left|\Delta X_{s}\right|^{2} \max \left\{\left|\Delta X_{s}\right|^{\alpha}: 1 \leq s \leq t\right\}
$$

Solution: We will use the trapezoidal rule which says that

$$
\int_{a}^{b} d x\left|g(x)-\frac{1}{2}(g(a)+g(b))\right| \leq C|b-a|^{2} \sup _{y_{1}, y_{2} \in(a, b)}\left|g^{\prime}\left(y_{1}\right)-g^{\prime}\left(y_{2}\right)\right|
$$

To show this formula, let us consider the approximating polynomial $P(x)$ defined as

$$
P(x)=-\frac{x-b}{h} g(a)+\frac{x-a}{h} g(b)
$$

where $h=b-a$, then one has by the mean value theorem
$g(x)-P(x)=\frac{x-b}{h}(g(a)-g(x))+\frac{x-a}{h}(g(x)-g(b))=\frac{(x-b)(x-a)}{h}\left(g^{\prime}\left(x_{1}\right)-g^{\prime}\left(x_{2}\right)\right)$
where $x_{1} \in(a, x)$ and $x_{2} \in(x, b)$. This implies that

$$
\int_{a}^{b} d x|g(x)-P(x)| \leq h^{2} \sup _{y_{1}, y_{2} \in(a, b)}\left|g^{\prime}\left(y_{1}\right)-g^{\prime}\left(y_{2}\right)\right|
$$

Using the representation (0.1), the trapezoidal formula and the Hölder inequality we immediately have

$$
\begin{aligned}
\left|R\left(f^{\prime}, X, t\right)\right| & \leq C \sum_{s=1}^{t}\left|\Delta X_{s}\right|^{2} \sup _{x, y \in\left(X_{s-1}, X_{s}\right)}\left|f^{\prime \prime}(x)-f^{\prime \prime}(y)\right| \\
& \leq C \max _{s \leq t}\left\{\left|\Delta X_{s}\right|^{\alpha}\right\} \sum_{s=1}^{t}\left|\Delta X_{s}\right|^{2}
\end{aligned}
$$

5. Let be $X_{t}=\sum_{s=1}^{t} \Delta X_{s}$ a random path process where $\Delta X_{s} \in\{-1,+1\}$ and $f(x)=\left|x-x_{0}\right|$ with $x_{0} \in \mathbb{R}$. Then

$$
f^{\prime}(x)=\operatorname{sign}\left(x-x_{0}\right)=\left\{\begin{array}{cl}
1 & \text { if } x>x_{0} \\
0 & \text { if } x=x_{0} \\
-1 & \text { if } x<x_{0}
\end{array}\right.
$$

Define

$$
L_{t}^{x_{0}}=\sum_{s=1}^{t} 1\left(X_{s-1}=x_{0}\right)
$$

Show the discrete Takana's lemma:

$$
\left|X_{t}-x_{0}\right|=L_{t}^{x_{0}}+\sum_{s=1}^{t} \operatorname{sign}\left(X_{t}-x_{0}\right) \Delta X_{s}
$$

Solution: Let us use the decomposition

$$
\begin{equation*}
f\left(X_{t}\right)-f\left(X_{0}\right)=\sum_{s=1}^{t} f^{\prime}\left(X_{s-1}\right) \Delta X_{s}+\sum_{s=1}^{t}\left[f\left(X_{s}\right)-f\left(X_{s-1}\right)-f^{\prime}\left(X_{s-1}\right) \Delta X_{s}\right] \tag{0.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left|X_{t}-x_{0}\right|=\sum_{s=1}^{t} \operatorname{sign}\left(X_{s-1}-x_{0}\right) \Delta X_{s}+\sum_{s=1}^{t}\left[\left|X_{s}-x_{0}\right|-\left|X_{s-1}-x_{0}\right|-\operatorname{sign}\left(X_{s-1}-x_{0}\right) \Delta X_{s}\right] \tag{0.3}
\end{equation*}
$$

Let us now look at the second term and split its summands as follows:

$$
\begin{align*}
& {\left[\left|X_{s}-x_{0}\right|-\left|X_{s-1}-x_{0}\right|-\operatorname{sign}\left(X_{s-1}-x_{0}\right) \Delta X_{s}\right] 1\left(X_{s-1}=x_{0}\right)} \tag{0.4}\\
& +\left[\left|X_{s}-x_{0}\right|-\left|X_{s-1}-x_{0}\right|-\operatorname{sign}\left(X_{s-1}-x_{0}\right) \Delta X_{s}\right] 1\left(X_{s-1}>x_{0}\right) \\
& +\left[\left|X_{s}-x_{0}\right|-\left|X_{s-1}-x_{0}\right|-\operatorname{sign}\left(X_{s-1}-x_{0}\right) \Delta X_{s}\right] 1\left(X_{s-1}<x_{0}\right) \\
& =\left|\Delta X_{s}\right| 1\left(X_{s-1}=x_{0}\right) \\
& +\left(X_{s}-x_{0}-X_{s-1}+x_{0}-\Delta X_{s}\right) 1\left(X_{s-1}>x_{0}\right) \\
& +\left(-X_{s}+x_{0}+X_{s-1}-x_{0}+\Delta X_{s}\right) 1\left(X_{s-1}<x_{0}\right) \\
& =\left|\Delta X_{s}\right| 1\left(X_{s-1}=x_{0}\right)=1\left(X_{s-1}=x_{0}\right),
\end{align*}
$$

therefore we have

$$
\left|X_{t}-x_{0}\right|=\sum_{s=1}^{t} \operatorname{sign}\left(X_{t}-x_{0}\right) \Delta X_{s}+\sum_{s=1}^{t} 1\left(X_{s-1}=x_{0}\right)
$$

