UH Introduction to mathematical finance I, Exercise-6 (02.03.2016)

In all the exercises we consider random variables defined on a probability
space (£, F) equipped with a probability measure P and a filtration F = (F; :
t € N), where F; C F; for s <.

1. Let be 7(w) € N and o(w) € N stopping times in the filtration F. Show
that 7 A o is also a stopping time. Is their sum 7(w) + o(w) a stopping
time?

Solution: By definition 7(w) is a stopping if {w : 7(w) < t} € F¢, but
{w:Tw)Nho(w) <t} ={w:7(w) <t} N{w: o(w) <t} € F.
Also the sum is a stopping time because

{wiTw)+ow) <t} =U_j{w:T7w) <s}U{w:ow) <t—sl€F

2. Consider the positive sequence Z; > 0 for ¢ € N. Show that

t
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Solution: We proceed by induction: the claim is trivial for ¢ = 1 and if
the assume the claim to be true up to t — 1, then we have

t
— Zt _thl —
(ZuZur) 'AZy =2 - —— =27
; 1 t—1 Zi 17 t

3. In the probability space (92, F,P), let be Q@ < P and Z = dQ/dP €
LY(Q, F, P). Show that P < @ if and only if Z(w) > 0 P a.s. and then

QW=7 “Hw)
Solution: First, let us assume that Q ~ P and we show that there
exists dQ/dP = Z(w) > 0 P almst surely. Since @ < P, the Radon-
Nikodym theorem gaurantees that there exists a random variable Z(w) €
LY(Q, F, P) such that Q(A = [, ZdP for any A € F. We just need to
show that Z > 0 almost surely To to do this, let be B = {w : Z(w) = 0},
then we have

aB) = [ zwar o

but since P < @, then we know that P(B) = 0.

For the other direction, we assume that (Q < P and that there Z =
dQ/dP € L' (Q, F, P) and Z > 0 almost surely. This implies that for any
AeF

Q(A) = /A ZdP.



Now we wnat to show that if Q(A) = 0, then P(A), which menas that
P < Q. In thact, if Q(A) = 0, then 0 = [, ZdP. But Z > 0 almost surely,
then P(A) = 0.

Therefore, finally

dQ = ZdP < dP = Z~'dQ.

. Let be f(z) a continuos function with a continuous derivative and X; a
discrete time process.

(a) Show the discrete Ito lemma:

f(Xf) - f(XO) = Zf/(XS—l)AXs + Z(f(XS) - f(XS—l) - f/(XS—l)AXS)

=) f(Xem1)AX, + 5 ZAf OAX, + R(f', X, 1)

s=1
where
/ [ w) — f(Xs-1) Jrf/(X(s))du
ry =3 [ (rw : (0.1)
Solution: Note that
: A S /el /
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s=1

then by rearranging the terms

f(Xe) = f(Xo) = Zf/(Xs—l)AXs + Z(Af(XS) - f/(XS—l)AXS)
= Zf’(X -

—Zf X, 1)AX, 4 = ZAf OAX, + R(f', X, t)

- f/(Xs—l)) + R(f/a X, t)

AX,
2

(b) Show that, if X; is a F-martingale and f is convex and has bounded
derivative, then f(X;) is a submartingale.
Solution: Let be |f'(x)| < K, then, since X; is a martingale, X; €
L' and thus E|f(X;)| < E|f(Xo)| + CKt(1 + sup,«; E|X,|) < oo.
Moreover, B

F(Xe)|Fei]

B (X0)|Fra] = f(Xeor) + SEIA (X)AX|Fir] + BA S (X)|Fima] ~ B[S

= f(Xi—1) + %]E[f/(thl)AXt‘ftfl] + E[Af/(X¢)|Fi-1]

= f(Xi1) +E[Af(Xe)|Fia] > f(Xioa)



where in the last line we used the convexity of f. We note that a more
direct way of proving the claim is by using the Jensen inequality:

E[f(Xe)|Fi-1] > fE[X(|Fi-1]) = f(Xe).

(c¢) Show that if f” is a-Holder continuous, i.e. if there exists a € (0, 1]
and C > 0 such that |f"(z) — f"(y)| < Clz — y|*, then

t
|R(f', X, t)| < constz |AX [P max{|AX,|*: 1< s <t}

s=1
Solution: We will use the trapezoidal rule which says that
b 1
/ dz|g(z) = 5(g9(a) + g < Clb—al* sup |g'(y1) = /(1)
a y1,y2€(a,b)

To show this formula, let us consider the approximating polynomial
P(z) defined as

z—>b T —a

P(z) = ———g(a) + ——9(b)

where h = b — a, then one has by the mean value theorem

o)~ P(@) = “(g(a)-g(@)+ = (@) -g) = CIEZ D (g0,) g/ ()

h
where z1 € (a,z) and x2 € (z,b). This implies that

/dx\g(x)—P(x)\§h2 sup |9’ (y1) — ¢'(y2)|

y1,y2€(a,b)

Using the representation (0.1)), the trapezoidal formula and the Hol-
der inequality we immediately have

t
IR(f, X )| <CY IAXP sup [f"(@) = ()]

s=1 z,y€(Xs—1,X5)
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5. Let be X; = ZZ:I AX, a random path process where AX, € {—1,+1}
and f(x) = |x — xg| with 29 € R. Then

1 if x > xg
f(x) =sign(zx —z0) =< 0 ifx=ux
-1 ifz<uxg
Define

t

tho = Z ].(XS,1 = .’Eo).

s=1



Show the discrete Takana’s lemma:

t
X, — x| = L + Zsign(Xt — z9)AX,.

s=1

Solution: Let us use the decomposition

t

FX0) = F(Xo) =D F/(Xem)AX, + ) [f(Xo) = F(Xomr) = F(Xe1)AX,]

(0.2)

so that

t t
Xy — ol = sign(Xo1 — 20)AX. + Y [|Xs — 2| — [Xoo1 — m0| — sign(Xo_1 — 20)AX],
s=1 s=1

(0.3)
Let us now look at the second term and split its summands as follows:

[|Xs — zo] — | Xs—1 — o] —sign(Xs—1 — x0) AX]1(Xs—1 =2x9) (0.4)
+ [|Xs — 20| — | Xs—1 — @o| — sign(Xs—1 — 20) AX]1(Xs—1 > x0)

+ [|Xs — 20| — | Xs—1 — @o| — sign(Xs—1 — 20)AX]1(Xs-1 < x0)

= |AX|1(Xs_1 = m0)

+ (X =20 — X1+ 20 — AX)1(X—1 > 20)

+ (= Xs + o+ X1 — 20 + AX) (X1 < 20)

= |AX|1(Xso1 = o) = 1(Xs—1 = 20),

therefore we have

t t
| Xt — x| = Zsign(Xt —29)AX + Z 1(Xs—1 = z9).

s=1 s=1



