
UH Introduction to mathematical finance I, Exercise-5 (24.02.2016)

In all the exercises we consider random variables defined on a probability
space (Ω,F) equipped with a probability measure P and a filtration F = (Ft :
t ∈ N), where Fs ⊆ Ft for s ≤ t.

Recall that a stochastic process (Mt : t ∈ N) is a (P,F)-martingale if Mt ∈
L1(Ω,Ft, P ) ∀t ∈ N and EP (Mt|Ft−1) = Mt−1 ∀t ≥ 1.

1. LetW1 ∼ N (0, 1) be a standard Gaussian random variable with EP (W1) =
0 and EP (W 2) = 1. Recall that EP (exp(θW1)) = exp(θ2/2). Consider a
market model (St, Bt : t ∈ {0, 1}) where B0 = S0 = 1, Bt = B0(1 + r),
r > −1 is deterministic.
and

S1 = S0 exp(σW1 + µ− σ2

2
).

Determine a risk neutral measure Q ∼ P such that W1 is Gaussian also
under Q.
Hint : try a measure Qθ with likelihood ratio (Radon-Nikodym derivative)
dQθ

dP = ζ1(θ) = exp(θW1 − θ2/2), and show that with respect to Qθ W1 is
also Gaussian, and compute for wich θ value Qθ is risk-neutral.
Solution: Let us check that W1 is Gaussian under Q:

EQ(W1) = EP (eθW1−θ2/2W1) =
1

2π

∫
R
dx eθx−θ

2/2x = θ = µQ

and

EQ(W 2
1 ) = EP (eθW1−θ2/2W 2

1 ) =
1

2π

∫
R
dx eθx−θ

2/2x2 = θ2 + 1,

so that σ2
Q = 1. To check the Gaussianity we look at

EQ(eλW1) = EP (e(θ+λ)W1−θ2/2) = eθλ+λ2/2 = eλµQ+σ2
Qλ

2/2.

To find a risk neutral measure we need to impose that

1 = S0 = EQ
(

S1

1 + r

)
=

1

2π(1 + r)

∫
R
dx e(σ+θ)x+µ−(σ2+θ2)/2−x2/2 =

eµ+σθ

1 + r

so that θ turns out to be

θ =
ln(1 + r)− µ

σ
.

2. Compute the set of arbitrage free prices for the european call and put
options (S1−K)+ ja (K −S1)+, and compute the cheapest superhedging
strategy and the most expansive subhedging strategy.
Solution: We consider first the option call: from the general theory we
know that the arbitrage-free discounted price should lies in the relative
interior of the convex hull of the support of the distribution:

c(F̃ , S0) ∈ ri(ConvexHull(supp(F̃ , S̃1)))
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Kuva 1: The segment AB is the interval of arbitrage-free prices

where F̃ = (S1−K)+/(1+r) and c(F̃ ) is the unknown price of the option.
Since S1 has a lognormal distribution, its support is R+ and then we can
grafically represent the situation as follows (the picture depends on the
value of K/(1 + r), in this example we set K/(1 + r) < S0):

From the picture is clear that the superhedging strategy would be c(F̃ ) =

S̃1 and the subhedging strategy c(F̃ ) = (S̃1 −K)+/(1 + r).

For the option put, we can exploit the parity relation

S1 −K = (S1 −K)+ − (K − S1)+

so that the initial prices are such that

S0 −K = c(F call)− c(F put).

Using the results for c(F call), we can easily answer the analoguos questions
for c(F put) = c(F call) +K − S0.

3. On a probability space (Ω,F , P ) equipped with a filtration F = (Ft :
t ∈ N), ∆Wt(ω) t = 1, . . . , T standard Gaussian random variables and let
Wt = W1 +W2 + · · ·+Wt. Under P St is Gaussian with EP (St) = 0 and
variance EP (S2

t ) = t. We assume thatWt is Ft-measurable and ∆Wt is P -
independent from the σ-algebra Ft−1. Let (St, Bt : t ∈ {0, 1}) be a market
model where B0 = S0 = 1, Bt = Bt−1(1 + rt), rt > −1 is deterministic,

and St = S0 exp
(∑t

u=1 σu∆Wu +
∑t
u=1(µu − σ2

u

2 )
)

(a) Construct a risk-neutral measure Q under which ∆Wt are Gaussian
with ∆Wt is Q-independent from the σ-algebrasta Ft−1.
Hint Construct a likelihood process Zt with product form, where
Z0 = 1 and

Zt = Z1
Z2

Z1

Z2

Z1

Zt
Zt−1

= ζ1ζ2 × · · · × ζt,
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such that Zt(ω) ≥ 0, EP (Zt) = 1 and EQ(ST |Ft−1) = St
Bt
BT

. Use
Bayes formula

EQ(St|Ft−1) = EQ(St|Ft−1) =
EP (StZt|Ft−1)

EP (Zt|Ft−1)

Solution: We want the measure Q to be such that

(1 + rt)St−1 = EQ(St|Ft−1) = EP (StZt|Ft−1) =
EP (StZt|Ft−1)

EP (Zt|Ft−1)
(0.1)

where we used the hint. From the lecture, we know that Zt is a
martingale, so we have

(1 + rt)St−1 = EP (St
Zt
Zt−1

|Ft−1) = EP (Stζt|Ft−1).

As we have done for exercise 1, we see that the ζt we are after is
ζt = eθt∆Wt−θ2t /2 where θt = σ−1

t (ln(1 + rt)− µt).
(b) What happens if µt,σt rt are F-predictable but not deterministic, , is

Q riskineutral also in this more general case?
Solution: It is risk neutral because they just come out of the condi-
tional expectation in

(c) Assuming that ∀t, µt = µ,σt = σ rt = r are determinic constants,
for t < T , use the riskneutral measure Q as a pricing measure and
compute the corresponding arbitrage-free prices ccall = Bt

BT
EQ((ST−

K)+|Ft) and cput = EQ((K − ST )+|Ft) for the european call- and
put- options (ST − K)+ ja (K − ST )+ (Black and Scholes formu-
lae). This market is incomplete, and these european options are not
replicable, the arbitrage free prices are not unique, since the risk-
neutral martingale measure is not unique.
Solution: Note that we can write

ST = St exp((µ− σ2

2
)τ + σ(WT −Wt)) = St exp((µ− σ2

2
)τ + σWτ )

where τ = T − t.
By using the Bayes formula as before and being Zτ = eθWτ−τθ2/2

with θ = σ−1(ln(1 + r)− µ), we get

EQ(ST |Ft) = EP (STZτ |Ft) = EP (ZτSt exp((µ− σ2

2
)τ + σWτ )|Ft)

= StEP (exp((µ− (σ2 + θ2)/2)τ + (σ + θ)Wτ )|Ft)
= St(1 + r)τ

and

EQ(S2
T |Ft) = EP (S2

TZτ |Ft)
= S2

t EP (exp((2µ− σ2 − θ2/2)τ + (2σ + θ)Wτ )|Ft)

= S2
t (1 + r)2τeσ

2τ
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thus, under Q, at t the price of the stock at expiry ST follows a
lognormal distribution with mean

St(1 + r)τ = elnSt+τ ln(1+r) (0.2)

and variance

S2
t (1 + r)2τ (eσ

2τ − 1) = (eσ
2τ − 1)e2 lnSt+2τ ln(1+r). (0.3)

So the price of the call option reads

ccall = (1 + r)−τEQ((ST −K)+|Ft)

= (1 + r)−τ
∫ ∞
K

(ST −K)dF (ST )

where dF (ST ) denotes the lognormal distribution for ST with mean
and variance computed before. We now need to recall a few properties
of the lognormal distribution: given a normal random variable Y ∼
N(ν, ρ2), then X = eY is lognormal with mean

E[X] = eν+ρ2/2 (0.4)

and variance

V ar[X] = (eρ
2

− 1)e2ν+ρ2 . (0.5)

Moreover, the probability density is

dF (x) =
dx

νx
√

2π
exp

(
− 1

2

(
lnx− ν

ρ

)2)
and the cumulative function is

F (x) = Φ((lnx− ν)/ρ)

where Φ(y) is the cumulative of a standard normal distribution, i.e.

Φ(y) =
1

2π

∫ y

−∞
e−t

2/2dt.

We are interested in the expected value of X conditioned on X > K
which is

LX(K) :=

∫ ∞
K

dx

ν
√

2π
exp

(
−1

2

(
lnx− ν

ρ

)2)
= exp(ν+ρ2)Φ

(
− lnK + ν + ρ

ρ

)
Contrasting (0.4) with (0.2) and (0.5) with (0.3), we have ν = lnSt+
τ(ln(1 + r)− σ2/2) and ρ = σ2τ , so that∫ ∞
K

ST dF (ST ) = LST (K) (0.6)

= exp(lnSt + τ(ln(1 + r)− σ2/2) + σ2τ/2)Φ

(
− lnK + lnSt + τ(ln(1 + r)− σ2/2) + σ2τ/2

σ
√
τ

)
= St(1 + r)τΦ(d1)
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where

d1 =
− lnK + lnSt + τ(ln(1 + r)− σ2/2) + σ2τ/2

σ
√
τ

,

and ∫ ∞
K

dF (ST ) = 1− F (K) (0.7)

= 1− Φ

(
lnK − lnSt − τ(ln(1 + r)− σ2/2)

σ
√
τ

)
= 1− Φ(−d2)

= Φ(d2)

where

d2 =
− lnK + lnSt + τ(ln(1 + r)− σ2/2)

σ
√
τ

.

Collecting together all the terms we get

ccall = StΦ(d1)−K(1 + r)−τΦ(d2). (0.8)

With the same strategy one gets also the formula for the put option:

cput = K(1 + r)−τΦ(−d2)− StΦ(−d1).

4. Let (Xt : t ∈ N) independent and identically distributed random variables
with P (Xt = 1) = 1−P (Xt = −1) = p = 1/2, and St = X1+X2+· · ·+Xt.
For a < 0 < b, where a, b ∈ Z, consider the random time

τ(ω) = inf
{
t ∈ N : St(ω) 6∈ (a, b)

}
.

(a) Show that τ(ω) is a stopping time in the filtration F = (Ft : t ∈ N)
where Ft = σ(Su : u ≤ t) = σ(Xu : u ≤ t).
Solution: We need to check that {ω : τ(ω) ≤ t} ∈ Ft, i.e.

{ω : inf{u ∈ N : Su(ω) 6∈ (a, b)} ≤ t} ∈ Ft

which is true since Su ∈ Ft for u ≤ t.
(b) Show that St is a F-martingale and it is square integrable E(S2

t ) <∞
∀t.
Solution: First note that |St| ≤ t then it is integrable. Moreover,

E(St|Ft−1) = E(Xt|Ft−1) + St−1 = E(Xt) + St−1 = St−1.

(c) Show that the stopped process (St∧τ : t ∈ N) is a martingale.
Solution: St is a martingale and a stopped martingale is a martin-
gale, as we have seen in the lectures.

(d) Show that P (τ <∞) = 1. Hint: you can use the second Borel Cantelli
lemma.
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Solution: Consider the event {ω : Sk(ω) = k} with k ≥ b − a + 1
and P ({ω : Sk(ω) = k}) = 2−k. Then the events

An = {ω : Snk − S(n−1)k = k}

are independent and such that P (An) = 2−k. Observe that

lim sup
n→∞

An ⊆ ∪nAn ⊆ {τ <∞}.

Since
∑
n P (An) =∞, then Borel-Cantelli lemma implies that P (lim supn→∞An) =

1 and then P ({τ <∞}) = 1.
(e) Compute P (Sτ = a) and P (Sτ = b). Hint: show that St∧τ

Solution: Note that P (Sτ = a) = P (τa < τb) and P (Sτ = a) +
P (Sτ = b) = 1 where τa = inft{St = a} and τb = inft{St = b}. By
the bounded convergence theorem we get

lim
t→∞

E(Sτ∧t) = E(Sτ ) = E[Mτ (χ(τa < τb)+χ(τa > τb))] = P (τa < τb)a+(1−P (τa < τb))b

but E(Sσ) = E(S0) = 0, then

P (Sτ = a) = P (τa < τb) =
b

b− a
and P (Sτ = b) = P (τb < τa) = − a

b− a

(f) Show that the martingale St has F-predictable variation 〈S〉t = t
which by definition means that

Mt := S2
t − t

is a F-martingale.
Solution: We compute the Doob decomposition of S2

t : the predic-
table part is

At =

t∑
s=1

E(S2
s − S2

s−1|Fs−1) =

t∑
s=1

E(2XsSs−1 +X2
s |Fs−1) = t

therefore, S2
t − t is a martingale.

(g) Show that E(τ) < ∞. hint: (Mt∧τ : t ∈ N) is a martingale, and we
have the upper and lower bounds

0 ≤ n ∧ τ = S2
n∧τ −Mn∧τ , where S2

t ≤ max{a2, b2}∀t (0.9)

use Fatou lemma for n→∞.
Solution: First, note that, since n ∧ τ is monotone, we have

τ = lim sup
n→∞

(n ∧ τ) = lim sup
n→∞

(S2
n∧τ −Mn∧τ )

Then the Fatou lemma gives

E(τ) = lim sup
n→∞

E(n ∧ τ) = E(lim sup
n→∞

(S2
n∧τ −Mn∧τ )) (0.10)

≤ lim sup
n→∞

E(S2
n∧τ −Mn∧τ ) = lim sup

n→∞
E(S2

n∧τ )

≤ max{a2, b2},

where we use the martingale property E(Mn∧τ ) = E(M0) = 0.
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(h) Compute the expectation E(τ). Hint compute E(S2
τ ), and take the

expectation in (0.9), and use monotone convergence theorem and
Lebesgue dominated convergence theorem.
Solution: The monotone converge theorem implies that

lim
n→∞

E(n ∧ τ) = E(τ)

while the dominated convergence theorem implies that

lim
n→∞

E(S2
n∧τ −Mn∧τ ) = E(S2

τ −Mτ )

since S2
τ −Mτ ∈ L1(µ), being E(τ) <∞. Therefore, from (0.9)

E(τ) = E(S2
τ−Mτ ) = E(S2

τ ) = E[S2
τ (1(τa ≤ τb)+1(τb < τa))] = |ab|.
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