UH Introduction to mathematical finance I, Exercise-5 (24.02.2016)

In all the exercises we consider random variables defined on a probability space (Ω, \mathcal{F}) equipped with a probability measure \mathbb{P} and a filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$, where $\mathcal{F}_s \subseteq \mathcal{F}_t$ for $s \leq t$.

Recall that a stochastic process $(M_t : t \in \mathbb{N})$ is a (P, \mathbb{F}) -martingale if $M_t \in L^1(\Omega, \mathcal{F}_t, P) \ \forall t \in \mathbb{N}$ and $E_P(M_t | \mathcal{F}_{t-1}) = M_{t-1} \ \forall t \geq 1$.

1. Let $W_1 \sim \mathcal{N}(0, 1)$ be a standard Gaussian random variable with $E_P(W_1) = 0$ and $E_P(W^2) = 1$. Recall that $E_P(\exp(\theta W_1)) = \exp(\theta^2/2)$. Consider a market model $(S_t, B_t : t \in \{0, 1\})$ where $B_0 = S_0 = 1$, $B_t = B_0(1 + r)$, r > -1 is deterministic.

and

$$S_1 = S_0 \exp(\sigma W_1 + \mu - \frac{\sigma^2}{2}).$$

Determine a risk neutral measure $Q \sim P$ such that W_1 is Gaussian also under Q.

Hint : try a measure Q^{θ} with likelihood ratio (Radon-Nikodym derivative) $\frac{dQ^{\theta}}{dP} = \zeta_1(\theta) = \exp(\theta W_1 - \theta^2/2)$, and show that with respect to $Q^{\theta} W_1$ is also Gaussian, and compute for wich θ value Q^{θ} is risk-neutral.

Solution: Let us check that W_1 is Gaussian under Q:

$$\mathbb{E}_{Q}(W_{1}) = \mathbb{E}_{P}(e^{\theta W_{1} - \theta^{2}/2}W_{1}) = \frac{1}{2\pi} \int_{\mathbb{R}} dx \, e^{\theta x - \theta^{2}/2}x = \theta = \mu_{Q}$$

and

$$\mathbb{E}_Q(W_1^2) = \mathbb{E}_P(e^{\theta W_1 - \theta^2/2} W_1^2) = \frac{1}{2\pi} \int_{\mathbb{R}} dx \, e^{\theta x - \theta^2/2} x^2 = \theta^2 + 1,$$

so that $\sigma_Q^2 = 1$. To check the Gaussianity we look at

$$\mathbb{E}_Q(e^{\lambda W_1}) = \mathbb{E}_P(e^{(\theta+\lambda)W_1 - \theta^2/2}) = e^{\theta\lambda + \lambda^2/2} = e^{\lambda\mu_Q + \sigma_Q^2\lambda^2/2}$$

To find a risk neutral measure we need to impose that

$$1 = S_0 = \mathbb{E}_Q\left(\frac{S_1}{1+r}\right) = \frac{1}{2\pi(1+r)} \int_{\mathbb{R}} dx \, e^{(\sigma+\theta)x+\mu-(\sigma^2+\theta^2)/2-x^2/2} = \frac{e^{\mu+\sigma\theta}}{1+r}$$

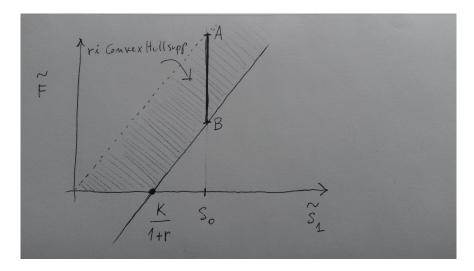
so that θ turns out to be

$$\theta = \frac{\ln(1+r) - \mu}{\sigma}$$

2. Compute the set of arbitrage free prices for the european call and put options $(S_1 - K)^+$ ja $(K - S_1)^+$, and compute the cheapest superhedging strategy and the most expansive subhedging strategy.

Solution: We consider first the option call: from the general theory we know that the arbitrage-free discounted price should lies in the relative interior of the convex hull of the support of the distribution:

$$c(F, S_0) \in ri(ConvexHull(supp(F, S_1)))$$



Kuva 1: The segment AB is the interval of arbitrage-free prices

where $\widetilde{F} = (S_1 - K)^+/(1+r)$ and $c(\widetilde{F})$ is the unknown price of the option. Since S_1 has a lognormal distribution, its support is \mathbb{R}_+ and then we can grafically represent the situation as follows (the picture depends on the value of K/(1+r), in this example we set $K/(1+r) < S_0$):

From the picture is clear that the superhedging strategy would be $c(\tilde{F}) = \tilde{S}_1$ and the subhedging strategy $c(\tilde{F}) = (\tilde{S}_1 - K)^+/(1+r)$.

For the option put, we can exploit the parity relation

$$S_1 - K = (S_1 - K)^+ - (K - S_1)^+$$

so that the initial prices are such that

$$S_0 - K = c(F^{call}) - c(F^{put}).$$

Using the results for $c(F^{call})$, we can easily answer the analoguos questions for $c(F^{put}) = c(F^{call}) + K - S_0$.

3. On a probability space (Ω, \mathcal{F}, P) equipped with a filtration $F = (\mathcal{F}_t : t \in \mathbb{N})$, $\Delta W_t(\omega) \ t = 1, \ldots, T$ standard Gaussian random variables and let $W_t = W_1 + W_2 + \cdots + W_t$. Under $P \ S_t$ is Gaussian with $E_P(S_t) = 0$ and variance $E_P(S_t^2) = t$. We assume that W_t is \mathcal{F}_t -measurable and ΔW_t is P-independent from the σ -algebra \mathcal{F}_{t-1} . Let $(S_t, B_t : t \in \{0, 1\})$ be a market model where $B_0 = S_0 = 1$, $B_t = B_{t-1}(1+r_t)$, $r_t > -1$ is deterministic,

and
$$S_t = S_0 \exp\left(\sum_{u=1}^t \sigma_u \Delta W_u + \sum_{u=1}^t (\mu_u - \frac{\sigma_u^2}{2})\right)$$

(a) Construct a risk-neutral measure Q under which ΔW_t are Gaussian with ΔW_t is Q-independent from the σ -algebrasta \mathcal{F}_{t-1} . **Hint** Construct a likelihood process Z_t with product form, where $Z_0 = 1$ and

$$Z_t = Z_1 \frac{Z_2}{Z_1} \frac{Z_2}{Z_1} \frac{Z_t}{Z_{t-1}} = \zeta_1 \zeta_2 \times \cdots \times \zeta_t,$$

such that $Z_t(\omega) \ge 0$, $E_P(Z_t) = 1$ and $E_Q(S_T | \mathcal{F}_{t-1}) = S_t \frac{B_t}{B_T}$. Use Bayes formula

$$E_Q(S_t|\mathcal{F}_{t-1}) = E_Q(S_t|\mathcal{F}_{t-1}) = \frac{E_P(S_tZ_t|\mathcal{F}_{t-1})}{E_P(Z_t|\mathcal{F}_{t-1})}$$

Solution: We want the measure Q to be such that

$$(1+r_t)S_{t-1} = E_Q(S_t|\mathcal{F}_{t-1}) = E_P(S_tZ_t|\mathcal{F}_{t-1}) = \frac{E_P(S_tZ_t|\mathcal{F}_{t-1})}{E_P(Z_t|\mathcal{F}_{t-1})}$$
(0.1)

where we used the hint. From the lecture, we know that Z_t is a martingale, so we have

$$(1+r_t)S_{t-1} = E_P(S_t \frac{Z_t}{Z_{t-1}} | \mathcal{F}_{t-1}) = E_P(S_t \zeta_t | \mathcal{F}_{t-1}).$$

As we have done for exercise 1, we see that the ζ_t we are after is $\zeta_t = e^{\theta_t \Delta W_t - \theta_t^2/2}$ where $\theta_t = \sigma_t^{-1}(\ln(1+r_t) - \mu_t)$.

(b) What happens if $\mu_t, \sigma_t r_t$ are \mathbb{F} -predictable but not deterministic, , is Q riskineutral also in this more general case?

Solution: It is risk neutral because they just come out of the conditional expectation in

(c) Assuming that $\forall t, \mu_t = \mu, \sigma_t = \sigma \ r_t = r$ are determinic constants, for t < T, use the riskneutral measure Q as a pricing measure and compute the corresponding arbitrage-free prices $c_{\text{call}} = \frac{B_t}{B_T} E_Q((S_T - K)^+ | \mathcal{F}_t)$ and $c_{\text{put}} = E_Q((K - S_T)^+ | \mathcal{F}_t)$ for the european call- and put- options $(S_T - K)^+$ ja $(K - S_T)^+$ (Black and Scholes formulae). This market is incomplete, and these european options are not replicable, the arbitrage free prices are not unique, since the riskneutral martingale measure is not unique. **Solution:** Note that we can write

$$S_T = S_t \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)\tau + \sigma(W_T - W_t)\right) = S_t \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)\tau + \sigma W_\tau\right)$$

where $\tau = T - t$.

By using the Bayes formula as before and being $Z_{\tau} = e^{\theta W_{\tau} - \tau \theta^2/2}$ with $\theta = \sigma^{-1}(\ln(1+r) - \mu)$, we get

$$\mathbb{E}_Q(S_T|\mathcal{F}_t) = \mathbb{E}_P(S_T Z_\tau | \mathcal{F}_t) = \mathbb{E}_P(Z_\tau S_t \exp((\mu - \frac{\sigma^2}{2})\tau + \sigma W_\tau) | \mathcal{F}_t)$$
$$= S_t \mathbb{E}_P(\exp((\mu - (\sigma^2 + \theta^2)/2)\tau + (\sigma + \theta)W_\tau) | \mathcal{F}_t)$$
$$= S_t (1+r)^\tau$$

and

$$\mathbb{E}_Q(S_T^2|\mathcal{F}_t) = \mathbb{E}_P(S_T^2 Z_\tau | \mathcal{F}_t)$$

= $S_t^2 \mathbb{E}_P(\exp((2\mu - \sigma^2 - \theta^2/2)\tau + (2\sigma + \theta)W_\tau) | \mathcal{F}_t)$
= $S_t^2 (1+r)^{2\tau} e^{\sigma^2 \tau}$

thus, under Q, at t the price of the stock at expiry S_T follows a lognormal distribution with mean

$$S_t (1+r)^{\tau} = e^{\ln S_t + \tau \ln(1+r)} \tag{0.2}$$

and variance

$$S_t^2(1+r)^{2\tau}(e^{\sigma^2\tau}-1) = (e^{\sigma^2\tau}-1)e^{2\ln S_t + 2\tau\ln(1+r)}.$$
 (0.3)

So the price of the call option reads

$$c_{\text{call}} = (1+r)^{-\tau} E_Q((S_T - K)^+ | \mathcal{F}_t)$$
$$= (1+r)^{-\tau} \int_K^\infty (S_T - K) dF(S_T)$$

where $dF(S_T)$ denotes the lognormal distribution for S_T with mean and variance computed before. We now need to recall a few properties of the lognormal distribution: given a normal random variable $Y \sim N(\nu, \rho^2)$, then $X = e^Y$ is lognormal with mean

$$E[X] = e^{\nu + \rho^2/2} \tag{0.4}$$

and variance

$$Var[X] = (e^{\rho^2} - 1)e^{2\nu + \rho^2}.$$
 (0.5)

Moreover, the probability density is

$$dF(x) = \frac{dx}{\nu x \sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{\ln x - \nu}{\rho}\right)^2\right)$$

and the cumulative function is

$$F(x) = \Phi((\ln x - \nu)/\rho)$$

where $\Phi(y)$ is the cumulative of a standard normal distribution, i.e.

$$\Phi(y) = \frac{1}{2\pi} \int_{-\infty}^{y} e^{-t^2/2} dt.$$

We are interested in the expected value of X conditioned on X>K which is

$$L_X(K) := \int_K^\infty \frac{dx}{\nu\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{\ln x - \nu}{\rho}\right)^2\right) = \exp(\nu + \rho^2) \Phi\left(\frac{-\ln K + \nu + \rho}{\rho}\right)$$

Contrasting (0.4) with (0.2) and (0.5) with (0.3), we have $\nu = \ln S_t + \tau (\ln(1+r) - \sigma^2/2)$ and $\rho = \sigma^2 \tau$, so that

$$\begin{split} &\int_{K}^{\infty} S_{T} dF(S_{T}) = L_{S_{T}}(K) & (0.6) \\ &= \exp(\ln S_{t} + \tau (\ln(1+r) - \sigma^{2}/2) + \sigma^{2}\tau/2) \Phi\left(\frac{-\ln K + \ln S_{t} + \tau (\ln(1+r) - \sigma^{2}/2) + \sigma^{2}\tau/2}{\sigma\sqrt{\tau}}\right) \\ &= S_{t}(1+r)^{\tau} \Phi(d_{1}) \end{split}$$

where

$$d_1 = \frac{-\ln K + \ln S_t + \tau (\ln(1+r) - \sigma^2/2) + \sigma^2 \tau/2}{\sigma \sqrt{\tau}},$$

and

$$\int_{K}^{\infty} dF(S_{T}) = 1 - F(K)$$

$$= 1 - \Phi\left(\frac{\ln K - \ln S_{t} - \tau(\ln(1+r) - \sigma^{2}/2)}{\sigma\sqrt{\tau}}\right)$$

$$= 1 - \Phi(-d_{2})$$

$$= \Phi(d_{2})$$
(0.7)

where

$$d_2 = \frac{-\ln K + \ln S_t + \tau (\ln(1+r) - \sigma^2/2)}{\sigma \sqrt{\tau}}.$$

Collecting together all the terms we get

$$c_{\text{call}} = S_t \Phi(d_1) - K(1+r)^{-\tau} \Phi(d_2).$$
(0.8)

With the same strategy one gets also the formula for the put option:

$$c_{\text{put}} = K(1+r)^{-\tau} \Phi(-d_2) - S_t \Phi(-d_1).$$

4. Let $(X_t : t \in \mathbb{N})$ independent and identically distributed random variables with $P(X_t = 1) = 1 - P(X_t = -1) = p = 1/2$, and $S_t = X_1 + X_2 + \dots + X_t$. For a < 0 < b, where $a, b \in \mathbb{Z}$, consider the random time

$$\tau(\omega) = \inf \{ t \in \mathbb{N} : S_t(\omega) \notin (a, b) \}.$$

(a) Show that $\tau(\omega)$ is a stopping time in the filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$ where $\mathcal{F}_t = \sigma(S_u : u \leq t) = \sigma(X_u : u \leq t)$. Solution: We need to check that $\{\omega : \tau(\omega) \leq t\} \in \mathcal{F}_t$, i.e.

$$\{\omega: \inf\{u \in \mathbb{N}: S_u(\omega) \notin (a,b)\} \le t\} \in \mathcal{F}_t$$

which is true since $S_u \in \mathcal{F}_t$ for $u \leq t$.

(b) Show that S_t is a \mathbb{F} -martingale and it is square integrable $E(S_t^2) < \infty$ $\forall t$.

Solution: First note that $|S_t| \leq t$ then it is integrable. Moreover,

$$\mathbb{E}(S_t | \mathcal{F}_{t-1}) = \mathbb{E}(X_t | \mathcal{F}_{t-1}) + S_{t-1} = \mathbb{E}(X_t) + S_{t-1} = S_{t-1}.$$

- (c) Show that the stopped process $(S_{t\wedge\tau}: t \in \mathbb{N})$ is a martingale. Solution: S_t is a martingale and a stopped martingale is a martingale, as we have seen in the lectures.
- (d) Show that $P(\tau < \infty) = 1$. Hint: you can use the second Borel Cantelli lemma.

Solution: Consider the event $\{\omega : S_k(\omega) = k\}$ with $k \ge b - a + 1$ and $P(\{\omega : S_k(\omega) = k\}) = 2^{-k}$. Then the events

$$A_n = \{ \omega : S_{nk} - S_{(n-1)k} = k \}$$

are independent and such that $P(A_n) = 2^{-k}$. Observe that

$$\limsup_{n \to \infty} A_n \subseteq \bigcup_n A_n \subseteq \{\tau < \infty\}.$$

Since $\sum_{n} P(A_n) = \infty$, then Borel-Cantelli lemma implies that $P(\limsup_{n \to \infty} A_n) = 1$ and then $P(\{\tau < \infty\}) = 1$.

(e) Compute $P(S_{\tau} = a)$ and $P(S_{\tau} = b)$. Hint: show that $S_{t \wedge \tau}$ **Solution:** Note that $P(S_{\tau} = a) = P(\tau_a < \tau_b)$ and $P(S_{\tau} = a) + P(S_{\tau} = b) = 1$ where $\tau_a = \inf_t \{S_t = a\}$ and $\tau_b = \inf_t \{S_t = b\}$. By the bounded convergence theorem we get

$$\lim_{t \to \infty} E(S_{\tau \wedge t}) = E(S_{\tau}) = E[M_{\tau}(\chi(\tau_a < \tau_b) + \chi(\tau_a > \tau_b))] = P(\tau_a < \tau_b)a + (1 - P(\tau_a < \tau_b))b$$

but $E(S_{\sigma}) = E(S_0) = 0$, then

$$P(S_{\tau} = a) = P(\tau_a < \tau_b) = \frac{b}{b-a}$$
 and $P(S_{\tau} = b) = P(\tau_b < \tau_a) = -\frac{a}{b-a}$

(f) Show that the martingale S_t has \mathbb{F} -predictable variation $\langle S \rangle_t = t$ which by definition means that

$$M_t := S_t^2 - t$$

is a \mathbb{F} -martingale.

Solution: We compute the Doob decomposition of S_t^2 : the predictable part is

$$A_t = \sum_{s=1}^t \mathbb{E}(S_s^2 - S_{s-1}^2 | \mathcal{F}_{s-1}) = \sum_{s=1}^t \mathbb{E}(2X_s S_{s-1} + X_s^2 | \mathcal{F}_{s-1}) = t$$

therefore, $S_t^2 - t$ is a martingale.

(g) Show that $E(\tau) < \infty$. hint: $(M_{t \wedge \tau} : t \in \mathbb{N})$ is a martingale, and we have the upper and lower bounds

$$0 \le n \land \tau = S_{n \land \tau}^2 - M_{n \land \tau}, \text{ where } S_t^2 \le \max\{a^2, b^2\} \forall t \qquad (0.9)$$

use Fatou lemma for $n \to \infty$.

Solution: First, note that, since $n \wedge \tau$ is monotone, we have

$$\tau = \limsup_{n \to \infty} (n \wedge \tau) = \limsup_{n \to \infty} (S_{n \wedge \tau}^2 - M_{n \wedge \tau})$$

Then the Fatou lemma gives

$$\mathbb{E}(\tau) = \limsup_{n \to \infty} \mathbb{E}(n \land \tau) = \mathbb{E}(\limsup_{n \to \infty} (S_{n \land \tau}^2 - M_{n \land \tau})) \qquad (0.10)$$

$$\leq \limsup_{n \to \infty} \mathbb{E}(S_{n \land \tau}^2 - M_{n \land \tau}) = \limsup_{n \to \infty} \mathbb{E}(S_{n \land \tau}^2)$$

$$\leq \max\{a^2, b^2\},$$

where we use the martingale property $\mathbb{E}(M_{n \wedge \tau}) = \mathbb{E}(M_0) = 0.$

(h) Compute the expectation $E(\tau)$. Hint compute $E(S_{\tau}^2)$, and take the expectation in (0.9), and use monotone convergence theorem and Lebesgue dominated convergence theorem.

Solution: The monotone converge theorem implies that

$$\lim_{n \to \infty} \mathbb{E}(n \wedge \tau) = \mathbb{E}(\tau)$$

while the dominated convergence theorem implies that

$$\lim_{n \to \infty} \mathbb{E}(S_{n \wedge \tau}^2 - M_{n \wedge \tau}) = E(S_{\tau}^2 - M_{\tau})$$

since $S_{\tau}^2 - M_{\tau} \in L^1(\mu)$, being $\mathbb{E}(\tau) < \infty$. Therefore, from (0.9)

$$E(\tau) = E(S_{\tau}^2 - M_{\tau}) = E(S_{\tau}^2) = \mathbb{E}[S_{\tau}^2(\mathbf{1}(\tau_a \le \tau_b) + \mathbf{1}(\tau_b < \tau_a))] = |ab|.$$