Kompleksianalyysi I kurssin jatkokurssi: Model solutions 3

1. Find the Laurent series of the function f(z) = m at the center
z = 3 and determine the area of convergence. What type of singularity
is the point z = 37

Solutions 1. By the Binomial Theorem we have:
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It follows directly, that z = 3 is a pole of order 2. The series converges
Vz, such that 0 < |z — 3| < 3.

Alternatively we can notice, that
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and use the geometric series.

2. (1) Determine the type of singularity of the function f : C\{j= : j € Z},
f(z) = 7= — L at the origin.

sin z
(2) Find the Laurent series of the function f(z) = —— at the origin
and determine the area of convergence.
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Solutions 2. (1) We modify the following expression:
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When 2z — 0, both the numerator and the denominator tends to zero.
We can use I'Hospital’s rule:
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Once again we can use I’Hospital’s rule, and finally we get
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Since the limit exists and is finite, we see that z = 0 is a removable
singularity.

(2) Moved to Exercise Session 4.

. Let f and g be analytic in the disk D(zg, 1) and let g have a simple zero
at the point z5. Show, that
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Solutions 3. We ca give the functions f and g as power series:
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We set h(z) == D1 b(z — 20)*~", and note, that h(z) # 0. Now
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where f/h is analytic. The Taylor expansion gives us
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Alternatively: The function g has a simple zero at zy, i.e. the function

f/g has a simple pole at zy. Using the residue calculation formula we
get:
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The last equality is true, since the derivative of the analytic function g
exists in z = 2.

. Calculate the residue of the function

in the point zy = 2.

Solutions 4. Using the result in Exercise 3 we define
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. Determine the residues of the functions
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(a) g(z) =
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at all their poles in the complex plane C.
Solutions 5. (a) The poles of the function are z = —1, z = 2i and
z = —2i. For the calculation of the residue at the pole zy we have the
formula
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where k is the order. We notice, that z = —1 is a pole of order 2, so
according to the formula we get
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At the points z = 2i and z = —2i the poles are simple, and by direct
calculation we get
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(b) Moved to Exercise Session 4.



