GEOMETRY OF CURVES AND SURFACES

Homework 9 (for the week Apr 4 - Apr 8)

- (1) (a) A surface is called *flat* if its Gaussian curvature is zero everywhere. Calculate the Gaussian and mean curvatures of the cylinder $x^2 + y^2 = R^2$, R > 0, and show that the cylinder is flat but not minimal.
 - (b) Calculate the Gaussian and mean curvatures of the helicoid

 $\mathbf{x}(u,v) = (u\cos v, u\sin v, bv),$

where $b \neq 0$.

- (2) Calculate the Gaussian and mean curvatures of the saddle surface z = xy. (Use the patch $\mathbf{x}(u, v) = (u, v, uv)$.)
- (3) Find the Gaussian and mean curvatures of the cone

$$\mathbf{x}(u,v) = (u,v,\sqrt{u^2 + v^2}),$$

where $(u, v) \neq (0, 0)$.

- (4) Show that the following patches have the same Gaussian curvature: $\mathbf{x}(u, v) = (u \cos v, u \sin v, v)$ and $\mathbf{y}(u, v) = (u \cos v, u \sin v, \ln u)$.
- (5) Let $\mathbf{x}(u, v)$ be a regular coordinate patch, and let c > 0. Then $\mathbf{y}(u, v) = c\mathbf{x}(u, v)$ is also a regular coordinate patch. Let K_x and K_y denote the Gaussian curvatures of the patches \mathbf{x} and \mathbf{y} , respectively. Show that

$$K_y = \frac{1}{c^2} K_x.$$

Date: March 31, 2016.