GEOMETRY OF CURVES AND SURFACES

Homework 9 (for the week Apr 4 - Apr 8)
(1) (a) A surface is called flat if its Gaussian curvature is zero everywhere. Calculate the Gaussian and mean curvatures of the cylinder $x^{2}+y^{2}=$ $R^{2}, R>0$, and show that the cylinder is flat but not minimal.
(b) Calculate the Gaussian and mean curvatures of the helicoid

$$
\mathbf{x}(u, v)=(u \cos v, u \sin v, b v)
$$

where $b \neq 0$.
(2) Calculate the Gaussian and mean curvatures of the saddle surface $z=x y$. (Use the patch $\mathbf{x}(u, v)=(u, v, u v)$.)
(3) Find the Gaussian and mean curvatures of the cone

$$
\mathbf{x}(u, v)=\left(u, v, \sqrt{u^{2}+v^{2}}\right),
$$

where $(u, v) \neq(0,0)$.
(4) Show that the following patches have the same Gaussian curvature: $\mathbf{x}(u, v)=(u \cos v, u \sin v, v)$ and $\mathbf{y}(u, v)=(u \cos v, u \sin v, \ln u)$.
(5) Let $\mathbf{x}(u, v)$ be a regular coordinate patch, and let $c>0$. Then $\mathbf{y}(u, v)=$ $c \mathbf{x}(u, v)$ is also a regular coordinate patch. Let K_{x} and K_{y} denote the Gaussian curvatures of the patches \mathbf{x} and \mathbf{y}, respectively. Show that

$$
K_{y}=\frac{1}{c^{2}} K_{x} .
$$

