GEOMETRY OF CURVES AND SURFACES

Homework 7 (for the week Mar 14 - Mar 18)
(1) Compute the second fundamental form of the elliptic paraboloid

$$
\mathbf{x}(u, v)=\left(u, v, u^{2}+v^{2}\right)
$$

(2) Compute the normal and geodesic curvature of the circle $\alpha(t)=(\cos t, \sin t, 1)$ on the paraboloid S, where S is parametrized by $\mathbf{x}(u, v)=\left(u, v, u^{2}+v^{2}\right)$.
(3) Compute the geodesic curvature of any (not necessarily great) circle on a sphere of radius R.
(4) Consider the saddle surface $S: z=x^{2}-y^{2}$.
(a) Find a unit normal N for S at the point $p=(0,0,0)$.
(b) Let $v=(1,0,0)$ be a unit vector in $T_{p} S$. Let P be the plane determined by the vectors N and v. The intersection $S \cap P$ is a smooth curve γ. Parametrize γ and find its curvature.
(5) Consider again the saddle surface $S: z=x^{2}-y^{2}$. Again, let $p=(0,0,0)$.
(a) Let $v=(0,1,0)$ be a unit vector in $T_{p} S$. Let P be the plane determined by the vectors N and v. The intersection $S \cap P$ is a smooth curve γ. Parametrize γ and find its curvature.
(b) As part a, but use the tangent vector $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ instead of $(0,1,0)$.

