GEOMETRY OF CURVES AND SURFACES

Homework 6 (for the week Feb 29 - Mar 4)
(1) Show that the coordinate patch

$$
\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad(u, v) \mapsto\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+v u^{2}, u^{2}-v^{2}\right)
$$

is a conformal map. (We already had this patch in Homework 4.)
(2) Find the area of the surface:
(a) The part of the plane $z=x+2 y$ that lies above the triangle with vertices $(0,0),(0,1)$ and $(1,1)$.
(b) The part of the surface $z=x^{2}+y^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
(3) Let

$$
S_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1, z \neq 1, z \neq-1\right\}
$$

and let

$$
S_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1,-1<z<1\right\}
$$

Then

$$
\mathbf{x}_{1}(\theta, \varphi)=(\cos \theta \cos \varphi, \sin \theta \cos \varphi, \sin \varphi)
$$

is a patch for S_{1} and

$$
\mathbf{x}_{2}(\theta, \varphi)=(\cos \theta, \sin \theta, \sin \varphi)
$$

is a patch for S_{2}. Let R be a small region in \mathbb{R}^{2}. Show that the areas of $\mathbf{x}_{1}(R)$ and $\mathbf{x}_{2}(R)$ are the same.
(4) Let C be the cone $C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 3 x^{2}+3 y^{2}=z^{2}, z>0\right\}$. Show that the map $f: \mathbb{R}^{2} \backslash\{0\} \rightarrow C$ defined by

$$
f(r \cos \theta, r \sin \theta)=\left(\frac{r}{2} \cos 2 \theta, \frac{r}{2} \sin 2 \theta, \frac{\sqrt{3}}{2} r\right)
$$

is a local isometry. (Consider $\mathbb{R}^{2} \backslash\{0\}$ as a surface in \mathbb{R}^{3} by identifying (x, y) with $(x, y, 0)$.)
(5) Find the cosine of the angle of intersection of the curves

$$
\alpha(t)=\left(\cos t,-\frac{1}{4} \sin t, \sin t\right), \text { and } \beta(t)=(\cos t, \sin t, \sin 2 t)
$$

at the point $(1,0,0)$.

