GEOMETRY OF CURVES AND SURFACES

Homework 5 (for the week Feb 22 - Feb 26)
(1) Calculate the first fundamental forms of the following surfaces:
(a) $\mathbf{x}(u, v)=(\sinh u \sinh v, \sinh u \cosh v, \sinh u)$
(b) $\mathbf{x}(u, v)=\left(u-v, u+v, u^{2}+v^{2}\right)$
(c) $\mathbf{x}(u, v)=(\cosh u, \sinh u, v)$
(d) $\mathbf{x}(u, v)=\left(u, v, u^{2}+v^{2}\right)$
(2) Parametrize the circle $(x-2)^{2}+(y-2)^{2}=1$ in the xy-plane with

$$
\alpha(u)=(2+\cos u, 2+\sin u)
$$

(a) Write down a parametrization for the torus obtained by rotating the circle about the x-axis.
(b) Calculate the first fundamental form for the torus using the parametrization obtained in part a.
(3) Consider the surface defined by

$$
z=\frac{2 x y}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0)
$$

The surface has a patch

$$
(u, v) \mapsto\left(u, v, \frac{2 u v}{u^{2}+v^{2}}\right)
$$

Convert (u, v) to polar coordinates and show that the surface is ruled.
(4) Find two different rulings for the surface defined by $z=x y$.
(5) Let S be a level surface, i.e., assume

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=c\right\}
$$

where $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth function and the gradient ∇f does not vanish at any point of S. Show that ∇f is perpendicular to the tangent plane at every point of S. (Hint: take $v \in T_{p} S$ and show $\nabla f \cdot v=0$.)

