GEOMETRY OF CURVES AND SURFACES

Homework 4 (for the week Feb 12 - Feb 19)
(1) Let

$$
\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad(u, v) \mapsto\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+v u^{2}, u^{2}-v^{2}\right)
$$

Show that, at every point of $\mathbb{R}^{2}, \mathbf{x}_{u} \times \mathbf{x}_{v} \neq \overline{0}$. (Here $\overline{0}$ denotes the zero vector in \mathbb{R}^{3}.)
(2) For each of the following, check if $\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is injective and calculate $\mathbf{x}_{u} \times \mathbf{x}_{v}$.
(a) $\mathbf{x}(u, v)=(u, v, u v)$
(b) $\mathbf{x}(u, v)=\left(u, v^{2}, v^{3}\right)$
(c) $\mathbf{x}(u, v)=\left(u+u^{2}, v, v^{2}\right)$
(3) The map

$$
\mathbf{x}: U=\mathbb{R} \times(0,2 \pi) \rightarrow \mathbb{R}^{3}, \quad(u, v) \mapsto\left(\frac{\cos v}{\cosh u}, \frac{\sin v}{\cosh u}, \tanh u\right)
$$

is a coordinate patch of the unit sphere

$$
\mathbb{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

Show that \mathbf{x} is one-to-one and that $\mathbf{x}_{u} \times \mathbf{x}_{v} \neq \overline{0}$ at every point of U. Also show that $\mathbf{x}(U) \subset \mathbb{S}^{2}$.
(4) Find the equation of the tangent plane of the following coordinate patch at the point $\mathbf{x}(0,0)$. (You do not have to check that the patch is regular.)

$$
\mathbf{x}(u, v)=((2+\sin v) \cos u,(2+\sin v) \sin u, \cos v)
$$

(5) Find the equation of the tangent plane of each of the following coordinate patches at the indicated points:
(a) $\mathbf{x}(u, v)=\left(u, v, u^{2}-v^{2}\right),(1,1,0)$
(b) $\mathbf{x}(r, \theta)=\left(r \cosh \theta, r \sinh \theta, r^{2}\right),(1,0,1)$
(You do not have to check that the patches are regular.)

