GEOMETRY OF CURVES AND SURFACES

Homework 3 (for the week Feb 8 - Feb 12)
(1) Calculate the curvature and torsion of the hyperbolic helix

$$
\alpha(t)=(\cosh t, \sinh t, t)
$$

(2) Calculate the curvature and torsion of the helix

$$
\alpha(t)=(t+\sqrt{3} \sin t, 2 \cos t, \sqrt{3} t-\sin t)
$$

(3) Show that the curve

$$
\alpha(t)=\left(\frac{4}{5} \cos t, 1-\sin t,-\frac{3}{5} \cos t\right)
$$

is a circle, and find its centre, radius and the plane where it lies.
(4) Let $\alpha(t)$ be a smooth unit speed curve with positive curvature. Let T, N and B denote the unit tangent vector, the principal normal vector and the binormal vector of α, respectively. There is a vector (called Darboux vector) ω satisfying the equations

$$
T^{\prime}=\omega \times T, \quad N^{\prime}=\omega \times N, \quad B^{\prime}=\omega \times B
$$

Use the Frenet-Serret equations to write ω as a linear combination of T, N and B.
(5) Let α, T, N, B and ω be as in Exercise 4. Show that

$$
T^{\prime} \times T^{\prime \prime}=k^{2} \omega
$$

where k is the curvature of α.

