## GEOMETRY OF CURVES AND SURFACES

Homework 2 (for the week Feb 1 - Feb 5)
(1) Let

$$
\alpha(t)=\left(\frac{(1+t)^{\frac{3}{2}}}{3}, \frac{(1-t)^{\frac{3}{2}}}{3}, \frac{t}{\sqrt{2}}\right),-1<t<1
$$

(a) Find the Frenet frame $\{T, N, B\}$ for $\alpha$.
(b) Calculate the curvature and torsion of $\alpha$.
(2) Let

$$
\alpha(t)=\left(\frac{1}{\sqrt{2}} \cos t, \sin t, \frac{1}{\sqrt{2}} \cos t\right)
$$

(a) Find the Frenet frame $\{T, N, B\}$ for $\alpha$.
(b) Calculate the curvature and torsion of $\alpha$.
(3) Calculate the torsion of

$$
\alpha:[1, \infty) \rightarrow \mathbb{R}^{3}, \quad t \mapsto \frac{1}{2}\left(t, \frac{1}{t}, \sqrt{2} \ln t\right)
$$

(4) Let $a>0$. Calculate the curvature and torsion of the helix

$$
\alpha(t)=\left(a \cos \left(\frac{t}{c}\right), a \sin \left(\frac{t}{c}\right), \frac{b t}{c}\right)
$$

where $c=\sqrt{a^{2}+b^{2}}$.
(5) Calculate $T, N, B$ and the curvature and torsion for the curve

$$
\alpha(t)=\left(e^{t} \cos t, e^{t} \sin t, e^{t}\right)
$$

