GEOMETRY OF CURVES AND SURFACES

Homework 12 (for the week May 2 - May 5)
(1) Let \mathbb{H} denote the hyperbolic plane, and let $d_{\mathbb{H}}$ denote the hyperbolic distance. A formula for $d_{\mathbb{H}}(z, w)$ was proved in class. Show that

$$
d_{\mathbb{H}}(z, w)=\ln \frac{|z-\bar{w}|+|z-w|}{|z-\bar{w}|-|z-w|} .
$$

Here $z, w \in \mathbb{H}$, and \bar{z} and \bar{w} denote the complex conjugates of z and w, respectively.
(2) Calculate the hyperbolic distance between each pair of the four points

$$
A=i, \quad B=1+2 i, \quad C=-1+2 i, \quad D=7 i .
$$

(3) Determine whether or not there exists a positive real number s such that

$$
d_{\mathbb{H}}(-s+i, i)=d_{\mathbb{H}}(i, s+i)=d_{\mathbb{H}}(-s+i, s+i) .
$$

(Here i denotes the imaginary unit.)
(4) Show that for any $a \in \mathbb{H}$ there is a unique hyperbolic line passing through a and intersecting the imaginary axis perpendicularly.
(5) Let l be the semicircle in \mathbb{H} whose euclidean center is -2 and whose euclidean radius is 1 . Then l is a hyperbolic line in \mathbb{H}. Find two hyperbolic lines through i that are parallel to l.

