GEOMETRY OF CURVES AND SURFACES

Homework 10 (for the week Apr 11 - Apr 15)
Let γ be a regular but not necessary unit-speed curve on a smooth surface S. Let k_{g} denote the geodesic curvature of γ. Let N denote the unit normal vector to S. Then

$$
k_{g}=\frac{\gamma^{\prime \prime} \cdot\left(N \times \gamma^{\prime}\right)}{\left\|\gamma^{\prime}\right\|^{3}}
$$

(1) Consider the surface S parametrized by

$$
\mathbf{x}(u, v)=(u \cos v, u \sin v, v)
$$

Find the geodesic curvatures of the following curves on S :
(a) $\alpha(t)=(a \cos t, a \sin t, t)=\mathbf{x}(a, t)$, where $a \in \mathbb{R}$,
(b) $\beta(t)=(t \cos b, t \sin b, b)=\mathbf{x}(t, b)$, where $b \in \mathbb{R}$.
(2) Consider the cylinder $S: \mathbf{x}(u, v)=(\cos u, \sin u, v)$. Find the geodesic curvature of the following curve on S :

$$
\alpha(t)=(\cos t, \sin t, a \cos t)=\mathbf{x}(t, a \cos t)
$$

For which values of a is the curve a geodesic?
(3) Let the surface S be as in Exercise 2. Find the geodesic curvature of the following curve on S :

$$
\beta(t)=(\cos \omega t, \sin \omega t, a t+b)=\mathbf{x}(\omega t, a t+b)
$$

For which values of ω, a and b is the curve a geodesic?
(4) Let S be the sphere of radius R. Then

$$
\mathbf{x}(u, v)=(R \cos u \cos v, R \sin u \cos v, R \sin v)
$$

is a regular coordinate patch for S. Show that for $\mathbf{x}, E_{u}=0=G_{u}$. Write down the geodesic equations for a curve γ in the image of \mathbf{x}.
(5) Let $\mathbf{x}(u, v)$ be a smooth coordinate patch with first and second fundamental forms

$$
E(d u)^{2}+2 F d u d v+G(d v)^{2}, \text { and } L(d u)^{2}+2 M d u d v+N(d v)^{2}
$$

Show that

$$
\mathbf{x}_{u v}=\Gamma_{12}^{1} \mathbf{x}_{u}+\Gamma_{12}^{2} \mathbf{x}_{v}+M N_{x}
$$

where N_{x} is the unit normal vector of the patch,

$$
\Gamma_{12}^{1}=\frac{G E_{v}-F G_{u}}{2\left(E G-F^{2}\right)} \text { and } \Gamma_{12}^{2}=\frac{E G_{u}-F E_{v}}{2\left(E G-F^{2}\right)}
$$

