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Introduction - sources of uncertainties

Markov chain Monte Carlo – MCMC

Some MCMC theory

Toy example: Stochastic Lorenz 95 model

Remote sensing of greenhouse gases. From ozone to methane and carbon dioxide.
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Sources of uncertainties in modelling

uncertainty source methods
Observation instrument noise, sampling design

sampling, representation, retrieval method
retrieval

Parameter estimation, optimal estimation
calibration, tuning MCMC

Model formulation approximate physics, model diagnostics
numerics, model selection
resolution, sub-grid scale averaging
processes Gaussian processes

Initial value state space models Kalman filter
assimilation
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MCMC for complex model

CPU demanding models, atmosphere, climate, weather

• Efficient adaptive MCMC.
• Parallel chains, "tricks" like early rejection.

High dimension of the unknown, inverse problems, profile estimation

• Regularization by smoothness priors.
• Dimension reduction.

Chaotic behaviour of models, model error.

• Assimilation, Kalman filter.
• Models are right, but not very accurate.
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High dimensional spaces are very empty

The plot shows the volume of a hyper
sphere

2πd/2rd

dΓ(d/2)

divided by the volume of a hyper cube

(2r)d .

Random walk type methods are needed to
explore the space of statistical significant
probability. Otherwise we will always be lost
at some distant corners. 2 4 6 8 10 12 14
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Terminology

• Observations yt , model states xt , parameters θ.
• State space representation.

yt = F(xt , θ) + εt obsevation equation
xt = M(xt−1, θ) + Et model evolution

• Hierarchical statistical model

p(yt |xt , θ) observation model
p(xt |xt−1, θ) process model
p(θ) parameter model

• Bayes formula.

p(x1:n, θ|y1:n) ∝
n∏

t=1

p(yt |xt , θ)p(xt |xt−1, θ)p(θ)
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Statistical analysis by simulation

• We are interested in the uncertainty distribution of the unknown model parameter
vector θ given the observational data y and the model: p(θ|y ,M).

• This distribution is typically analytically intractable.
• We can still simulate observations from p(y |θ,M).
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• Statistical inference is used to define what is a good fit. Parameters that are
consistent with the data and the modelling uncertainty are accepted.
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Markov chain Monte Carlo – MCMC

• Simulate the model while sampling the
parameters from a proposal distribution.

• Accept (or weight) the parameters
according to a suitable goodness-of-fit
criteria depending on prior information and
error statistics defining the likelihood
function.

• The resulting chain is a sample from the
Bayesian posterior distribution of
parameter uncertainty.
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Posterior distributions
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dY/dt = (µθT−20−ρ−Q/V−pZ)Y

 95% predictive envelope

 95% envelope for the observations

While sampling the model using the MCMC, we get:

• Posterior distribution of model parameters.
• Posterior distribution of model predictions.
• Posterior distribution for model comparison.
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Terminology for modelling with MCMC methods

The observation model (in non state space form) is

y = f (x |θ) + ε,

observations = model + error.

Likelihood function for independent Gaussian errors corresponds to a simple quadratic
cost function, with

p(y |θ) ∝ exp

{
−
1
2

∑n
i (yi − f (xi |θ))

2

σ2

}

= exp
{
−
1
2
SS(θ)

σ2

}
,

where SS(θ) = −2 log(p(y |θ)), the log-likelihood in "sum-of-squares" cost function
format. For calculating the posterior, we also need to account SSpri(θ) = −2 log(p(θ)),
the prior "sum-of-squares".
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Metropolis-Hastings algorithm

Random walk Metropolis-Hastings algorithm with Gaussian proposal distribution (and
Gaussian likelihood).

• Propose new parameter value θprop = θcurr + ξ, where ξ ∼ N(0,Σprop) is drawn
from the proposal distribution.

• Accept θprop with probability α,

α(θcurr, θprop) = 1∧ exp
{
−

1
2

(
SS(θprop) − SS(θcurr)

σ2

)

−
1
2

(
SSpri(θprop) − SSpri(θcurr)

)}
• Efficient proposal distribution ⇒ adaptive tuning of Σprop by AM and DRAM
algorithms.

Haario, et al, Stat.Comp. 2006.
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Short chains and adaptation
• It is important to make short chains as efficient as possible. Efficient: produce
estimates with small Monte Carlo error.
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Short MCMC chain repeated 1000 times with different algorithms, Gaussian 10
dimensional target and too large initial covariance.
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Short chains and adaptation

• But, adaptation might slow the convergence.
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Same as in the previous slide, but now with more optimal initial proposal, Gaussian 10
dimensional target, near optimal initial covariance.
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Faster MCMC: parallel chains

• Random walk MCMC is by nature
sequential, and it is generally more
efficient to run one long chain than
many short independent chains.

• In parallel adaptive MCMC, the
adaptation is done over the points in
all chains and they share one common
adapted proposal covariance.

• Communication between the chains
can be asynchronous.

θi+1 ∼ N(θi,Σi)

α = min(1,π(θi+1)/π(θi))

θi+1 = θi +
1

i + 1
(θi − θi)

Σi+1 =
i − 1

i
Σi +

1

i
(θi − θi)(θi − θi)

T

θi+1 ∼ N(θi,Σi)

α = min(1,π(θi+1)/π(θi))

θi+1 ∼ N(θi,Σi)

α = min(1,π(θi+1)/π(θi))

π(θi+1) ∝ p(θi+1)L(y|θi+1) π(θi+1) ∝ p(θi+1)L(y|θi+1) π(θi+1) ∝ p(θi+1)L(y|θi+1)
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Faster MCMC: early rejection
Idea: evaluate the likelihood in parts and check after each part if the proposed
parameter value can be rejected.

Cumulative cost function evaluated after each month
during one year climate model simulation
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This simple trick saved 10%–80% of CPU time in different test cases.
Solonen, et al, Bayesian Analysis, 2012.
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MCMC Toolbox for Matlab

http://helios.fmi.fi/~lainema/mcmc/
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MCMC toolbox for matlab

model.ssfun = @mycostfun

data = load(’datafile.dat’);

parameters = {
{’par1’, 2.3 }
{’par2’, 1.2 }

};

options.nsimu = 5000;
options.method = ’am’;

[results,chain] = mcmcrun(model,data,parameters,options);

mcmcplot(chain,[],results)
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Some MCMC theory
• Let θ be a parameter vector having values in a parameter space Θ, indexing family
of possible probability distributions

p(y |θ)

describing our observations y .
• If p(θ) is a prior probability density describing our prior beliefs about θ, then Bayes
formula gives the posterior π in terms of likelihood and prior

π(θ) := p(θ|y) =
p(y |θ)p(θ)∫
p(y |θ)p(θ) dθ

• In Markov chain Monte Carlo methods (MCMC) we construct a Markov chain
which has our parameter space Θ as its state space and π as its limiting stationary
distribution.

• That means we have a way of sampling values from posterior distribution π and
therefore make Monte Carlo inference about θ in form of sample averages and
density estimates.
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Markov chain Monte Carlo – MCMC
• A Markov chain is described by a transition kernel P(θ, dθ ′) that gives for each
state θ the probability distribution for the chain to move to state dθ ′ in next step.
For ease of exposition let us assume that for each distribution the corresponding
density function exists and denote the transition density as p(θ, θ ′).

• MCMC methods produce chains that are aperiodic, irreducible and fulfill a
reversibility condition, also called ’detailed balance equation’:

π(θ)p(θ, θ ′) = π(θ ′)p(θ ′, θ) θ, θ ′ ∈ Θ.

• If π is the initial distribution of the starting state, then the intensity of going from
state θ to state θ ′ is same as that of going from θ ′ to θ.

• Direct consequence of the reversibility is∫
π(θ)p(θ, θ ′) dθ = π(θ ′), for all θ ′ ∈ Θ

that means that π is in fact the stationary distribution of the chain and we can use
a sample from the chain as a random sample from distribution π.
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The Metropolis-Hastings algorithm
• In Metropolis-Hastings algorithm we generate a Markov chain with transition
density

p(θ, θ ′) = q(θ, θ ′)α(θ, θ ′), θ 6= θ ′

p(θ, θ) = 1−
∫
q(θ, θ ′)α(θ, θ ′) dθ

for some proposal density q and for acceptance probability α.
• The chain is reversible if and only if

π(θ)q(θ, θ ′)α(θ, θ ′) = π(θ ′)q(θ ′, θ)α(θ ′, θ).

• Which leads to choose α as

α(θ, θ ′) = min
{
1,
π(θ ′)q(θ ′, θ)
π(θ)q(θ, θ ′)

}
.

• Usually Θ ⊂ Rd , but the reversibility condition can be formulated in more general
state space.
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Notes:

• In MH algorithm we need to calculate the posterior ratio π(θ ′)/π(θ) in the
formula for α but Bayes formula gives this in terms of likelihood and prior as

p(y |θ ′)p(θ ′)
p(y |θ)p(θ)

and the constant of proportionality disappears.
• We need some theory of Markov chains but with important simplifications: we
know by construction that the stationary distribution π exists. Also we are able to
choose the initial distribution as we like. That gives us simple ways to prove
important ergodic properties of the MH chain: The law of large numbers that
gives us permission to use sample averages as estimates and the central limit
theorem which gives us the convergence rate for the algorithms.

21/43



The algorithm

1. Choose initial values θ0 and proposal density q.
2. Using current value of the chain θi propose a new value θ ′ using proposal

distribution q(θi , ·).
3. Generate a random number u uniform on [0, 1] and accept the new value if

u 6 min
{
1,
π(θ ′)q(θ ′, θi )
π(θi )q(θi , θ ′)

}
.

4. If accepted set θi+1 = θ ′, if not θi+1 = θi .
5. Go to (ii) until enough values have been sampled.
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Nonlinear model fitting
• Consider a nonlinear model describing observations y by control variables x and
parameter vector θ:

y = f (x , θ) + ε, ε ∼ N(0, Iσ2).

• In ’classical’ theory we find the optimal θ by minimizing the sum of squares

SS =

n∑
i=1

(yi − f (xi , θ))
2

which leads to a nonlinear minimization problem. Confidence regions for θ are
usually obtained by linearizing the likelihood function and by asymptotic
arguments.

• In Bayesian approach we can get a similar fit by using non-informative uniform
priors for the parameter θ and the inference is done with the posterior distribution
of θ obtained with MCMC.

• For the error variance a convenient choice for prior information is thru ’precision’
τ = σ−2:

p(τ) ∼ Γ(
n0

2
,
n0

2
S2

0 )
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Implementation

Just need to write a routine to return the sum-of-squares for given parameter and data.

1. Initialization. Initial values for θ, n0 and S2
0 . Proposal distribution q. Adaptive

strategies for q useful here.
2. MH step: Generate a new value for θ from q and calculate sum-of-squares for it,

SSnew. New value is accepted if SSnew < SSold or if

u 6 exp
{
−

1
2σ2 (SSnew − SSold)

}
where u ∼ U(0, 1) and σ2 is current value of the error variance.

3. Update σ−2 with a draw from

Γ(
n0 + n

2
,
n0S

2
0 + SS

2
).

4. Go to (ii) until enough values have been sampled.
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Example: Oxygen consumption in lake Tuusulanjärvi

• Model:

d [O2]

dt
= −k [O2]θ

T−20

• Data: measured oxygen concentrations
and temperatures during ice season.

• Parameters: k , oxygen consumption
rate, θ, temperature coefficient.

• On right: a plot of the generated
MCMC chain for the two parameters.
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Reversible jump Metropolis-Hastings algorithm

• The detailed balance equation can also be formulated in general state space. For
the Metropolis-Hastings algorithm to work it must only accept states from where
there is a positive probability to do a reversible move back to the original state.

• For the reversible jump Metropolis-Hastings algorithm the state space is written as

E =
{
(k , θ(k)), k ∈ K, θ(k) ∈ Θk

}
,

where K is enumerable model space and θ(k) ∈ Θk is the parameter space of
model k . The dimension of θ(k) can vary with k .

• The posterior distribution can be factorized as

π(θ(k), k) = π(θ(k)|k)π(k)

and we might be interested in the posterior probabilities of different models π(k)
of draw some conditional or marginal conclusions about different models in terms
of π(θ(k)|k) or π(θ(k)).
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Implementing RJMCMC
• We need a reversible move between models i and j . This is accomplished by a
bijective function gij that transforms the parameters

gij(θ
(i), u(i)) = (θ(j), u(j)),

and retains the dimensions

d(θ(i)) + d(u(i)) = d(θ(j)) + d(u(j)).

• The inverse transform g−1
ij =: gjk gives the move to the other direction. Variables

u and u ′ are random quantities used in proposing change in the components and
as extra components when going to a higher dimension.

• If qij(θ(i), u(i)) is the probability density for the proposed move and p(i , j) is the
probability for the move i → j the accepting probability can be written as

αij(θ
(i), θ(j)) =

min

{
1,
πj(θ

(j))p(j , i)qji (θ
(j), u(j))

πi (θ(i))p(i , j)qij(θ(i), u(i))

∣∣∣∣
∂(θ(j), u(j))

∂(θ(i), u(i))

∣∣∣∣

}
. (**)
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Step of the algorithm:

When being in model ki with parameter vector θ(ki)i :
1. Choose a new model j by drawing it from distribution p(i , ·). Propose a value for

the parameter θ(j) by generating u from distribution qki j(θ
(ki)
i , u).

2. Accept the move with probability (**):
ki+1 = j and θ(ki+1)

i+1 = θ(j).
3. If the move is not accepted, stay in the current model: ki+1 = ki and
θ
(ki+1)
i+1 = θ

(ki)
i .

In step (i) it is also possible to choose stay in the current model and do a standard
Metropolis-Hastings step.

28/43



RJMCMC Example

Model 1: (θ1, θ2) ∈ R2, Model 2: θ ∈ R.
Move 1→ 2

g12((θ1, θ2)) =

(
θ1 + θ2

2
,
θ1 − θ2

2

)
= (θ, u).

Move 2→ 1
g21(θ, u) = (θ+ u, θ− u).

Make a move to another model with probability 1
2 . Draw a random number u from

distribution q. Ratios used in acceptance are now (θ1, θ2)→ θ:

π2(θ)
1
2q(u)

π1(θ1, θ2)
1
2

∣∣∣∣
∂(θ, u)

∂(θ1, θ2)

∣∣∣∣ =
π2(

θ1+θ2
2 )q(θ1−θ22 )

π1(θ1, θ2)

1
2
.

and for θ→ (θ1, θ2):
π1(θ+ u, θ− u)

π2(θ)q(u)
2.

This is reasonable if the ratio π1/π2 is easy to calculate.
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RJMCMC Example (cont.)

Standard 1 dimensional random walk, with
’extra’ jumps or changes of level. Let

θ(k) = (b1, c2, . . . , bk , ck)

be the places and sizes of these jumps.
The likelihood for the model is

p(x |b, c) ∝ exp

{
−

1
2d

n∑
i=1

(∆xi − ci1{bi })
2

}
,
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RJMCMC Example (cont.)

Let the prior for the locations of the jumps be uniform over the observational interval
and the prior for the number of jumps be Poisson. Let prior sizes of the jumps be
Gamma with unknown sign and suppose that sizes and places are independent.

p(k) =
λk

k!
e−λ

p(|c |) = Γ(c ,α,β) =
xα−1e−x/β

βαΓ(α)

Reversible jump MH: At every step we have 3 alternatives
1. Stay at the current model and do a standard MH-step componentwise for every

step present.
2. Add one step at random location and propose a size for the jump there.
3. Remove one step by random choice among present jumps.
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RJMCMC Example (cont.)
This gives us the acceptance probabilities

αk,k+1(b(k+1), c) = min

{
1, exp

(
∆x2

(k+1)

2d
−

|c |

β

)
|c |α−1λ(n − k)

√
2πd

2βαΓ(α)(k + 1)2

}
,

αk,k−1(b(k), c) = min

{
1, exp

(
−∆x2

(k)

2d
+

|c |

β

)
2k2βαΓ(α)

(n − k + 1)λ|c |α−1
√
2πd

}
,

αb(b(i), b(j)) = min
{
1, exp

{
c(∆x(j) − ∆x(i))

d

} }
,

and

αc(c, c
′) = min

{
1, exp

(
−1
2d
(
2∆x(j)(c

′ − c) − c2 + (c ′)2
)) ∣∣∣∣

c ′

c

∣∣∣∣
α−1

exp
(
|c |− |c ′|
β

)}
.
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RJMCMC Example (cont.)
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RJMCMC Example (cont.)
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RJMCMC Example (cont.)
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Toy example: Stochastic Lorenz 95 model

• The next example demonstrates the difficulties in using non-linear models to
describe dynamical systems. Chaotic behaviour, initial values, parameter
estimation.

• It is a common bench mark model for studying data assimilation, e.g. state
estimation with large dimensional model states combined with (relatively) limited
amount of observations, such as in numerical weather prediction.

• Without going into details, some solutions to the parameter estimation problem
("tuning of the model") are presented.
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Stochastic Lorenz 95 model

Nature:

dxk
dt

= −xk−1 (xk−2 − xk+1) − xk + F −
hc

b

Jk∑
j=J(k−1)+1

yj

dyj
dt

= −cbyj+1 (yj+2 − yj−1) − cyj +
c

b
F +

hc

b
x1+b j−1

J c

Forecast model:
dxk
dt

= −xk−1 (xk−2 − xk+1) − xk + F − g(xk , θ).

with k = 1 . . .K , j = 1 . . . JK ,K = 40, J = 8,F = 10, h = 1, c = b = 10 and
g(xk , θ) = θ0 + θ1xk .
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Stochastic Lorenz 95 model
The toy model: parameterized Lorenz 95
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Stochastic Lorenz 95 model

We have 40 slow state variables -•- and 320 fast state variables -•-, whose effect is
parametrized in the forecast model.

Good test case to study:
• Estimation methodologies.
• Different parameterizations
g(xk , θ).

• Modeling error.
• Filtering and ensemble
methods.

3 2 1 40 39

dxk

dt
= −xk−1 (xk−2 − xk+1) − xk + F−hc

b

Jk�

j=J(k−1)+1

yj

dyj

dt
= −cbyj+1 (yj+2 − yj−1) − cyj +

c

b
Fy +

hc

b
x1+� j−1

J �

NATURE: 

FORECAST MODEL: 
dxk

dt
= −xk−1 (xk−2 − xk+1) − xk + F−g(xk, θ)

Wilks, D.: Effects of stochastic parametrizations in the Lorenz ’96 system, Quart. J. Roy. Meteor. Soc., 131(606), 389–407, 2005.
doi:10.1256/qj.04.03
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Attempt 1: Lorenz 95 MCMC by summary statistics

Results: summary statistics

• The likelihood: �2 log p(s|✓) =
P6

i=1(s
i � si

✓)
2/�2

i

• Six statistics: mean, variance, auto-covariance with time lag 1,

covariance of a node with its neighbor and cross-covariance of a node

with its two neighbors for time lag 1
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• Chaoticity: small perturbation in initial values or in parameters causes large
changes in model trajectories.

• Estimation of static parameters is difficult, and even not very well defined problem.
Hakkarainen, et al, NPG 2012.
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Attempt 2: Lorenz 95 with Kalman filter likelihood

• Using Kalman filter for defining the likelihood by model short term predictions
while accounting for the model error and chaotic behavior.

128 J. Hakkarainen et al.: On closure parameter estimation in chaotic systems

To fix the notation, let us assume for simplicity that a dy-
namical model can be described by a discrete state space
model

xk = M(xk�1,✓) (1)
zk = K(xk), (2)

where x denotes the state of the system, the model opera-
tor M solves the equations that describe the dynamics of
the system, k is the index of the time, z are the variables
that can be observed, K is the observation operator and ✓

denotes the (closure) parameters. The model operator M is
assumed to contain everything that is needed to simulate the
system, including also as external forcing terms and bound-
ary conditions. In the real-world setting, we would like to
tune parameters ✓ of the model in Eqs. (1)–(2) using a set
of available observations y = {y1,...,yn} taken at some time
instances {t1,...,tn}. Note that y are measured values, while
z are simulated values of the same variables.
In parameter estimation, we follow the Bayesian method-

ology, in which the knowledge about the unknown parame-
ters is inferred from the posterior distribution p(✓ |y):

p(✓ |y) / p(✓)p(y|✓), (3)

which is evaluated using the prior p(✓) and the likelihood
p(y|✓). The likelihood function specifies how plausible the
observed data are given model parameter values. Therefore,
defining a proper likelihood function is the central problem in
parameter estimation. The prior contains the information that
we have about the parameters based on the accumulated in-
formation from the past. For an introduction to Bayesian es-
timation, see, for example, the book by Gelman et al. (2003).
Traditionally, parameters of dynamical systems are esti-

mated by comparing model simulations to observed data us-
ing a measure such as a sum of squared differences between
z and y. This corresponds to the assumption that the obser-
vations are noisy realizations of the model values. The prob-
lem in applying these techniques directly to chaotic systems
is that the dynamically changing model state x is not known
exactly, and small errors in the state estimates can grow in an
unpredictable manner, making direct comparisons of model
simulations and observations meaningless over long time pe-
riods.
In this paper, we consider three ways to estimate the clo-

sure parameters of chaotic models. In the first approach, ob-
servations and model simulations are summarized in the form
of statistics, which are typically some temporal and spatial
averages of the data. The likelihood model is constructed in
terms of the summary statistics such that model parameters
producing statistics that are closer to the observed statistics
would have higher likelihood. This kind of an approach is
employed in climate model parameter estimation in several
recent studies (Jackson et al., 2008; Järvinen et al., 2010;
Sexton et al., 2011). In the summary statistics approach,
the problem of chaotic behavior can be alleviated, since the
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Fig. 1. An illustration of sequential data assimilation in a chaotic
system. After some time the control run, even with optimal param-
eter values, gets “off track” due to chaos. Data assimilation keeps
the model in the same trajectory with the data.

statistics computed from long simulations are less dependent
on the initial conditions than the specific values of the state
variables.
The other two approaches are based on embedding the pa-

rameter estimation techniques into dynamical state estima-
tion (data assimilation) methods that constantly update the
model state as new observations become available. Thus, the
model is kept in the vicinity of the data, and the problems
caused by chaotic behavior can be alleviated. This is illus-
trated in Fig. 1 by running the Lorenz system – that is used
for experimentation in Sect. 5 – two times from the same ini-
tial values, with and without data assimilation. One can see
that the model run without assimilation eventually deviates
from the trajectory of the observations.
We consider two ways to implement parameter estima-

tion within a data assimilation system. In the state aug-
mentation approach (see Sect. 4), the model parameters are
treated as artificial states and assimilated together with the
actual model state (see, e.g. Kitagawa, 1998; Ionides et al.,
2006; Dowd, 2011). In the likelihood approach, detailed in
Sect. 3, the likelihood of a parameter value is evaluated by
running a state estimation method over a chosen data set,
keeping the parameter value fixed. The likelihood is con-
structed using the filter residuals (the squared differences be-
tween the observations and the short-range forecasts), see
Fig. 1. This resembles classical parameter estimation, but
the uncertainty in the model state is “integrated out” using
a state estimation technique. The problem of chaoticity is
circumvented by computing the likelihood components from
short simulations, where chaotic behavior does not yet ap-
pear. The likelihood approach is a standard technique in
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Results: filter likelihood
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Scattering plot of parameter pairs from MCMC runs using 10 (blue),

20 (red), 50 (black) and 500 (green) day simulations.

Right: scatter plot of parameter pairs from MCMC runs using 10 (blue), 20 (red), 50
(black) and 500 (green) day simulations.
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Attempt 3: Lorenz 95 model with EPPES
Ensemble Kalman filter for states, parameter perturbations from proposal distribution
that is adapted. On left, each column of points corresponds to proposed parameter
values in one time window of the sequential estimation procedure. On right, forecast
skill is calculated over a grid, with an ellipse and dot showing the final estimated
parameter proposal.

parameter evolution "6 day" forecast skill
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Remote sensing of greenhouse gases. From ozone to methane and carbon
dioxide.

Separate slides by Johanna Tamminen / FMI
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