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Introduction - sources of uncertainties

Markov chain Monte Carlo — MCMC

Some MCMC theory

Toy example: Stochastic Lorenz 95 model

Remote sensing of greenhouse gases. From ozone to methane and carbon dioxide.

2/43



Sources of uncertainties in modelling

uncertainty

source

methods

Observation

instrument noise,
sampling, representation,
retrieval

sampling design
retrieval method

Parameter

estimation,
calibration, tuning

optimal estimation
MCMC

Model formulation

approximate physics,
numerics,

resolution, sub-grid scale
processes

model diagnostics
model selection
averaging
Gaussian processes

Initial value

state space models

Kalman filter
assimilation
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MCMC for complex model

CPU demanding models, atmosphere, climate, weather

e Efficient adaptive MCMC.

e Parallel chains, "tricks" like early rejection.

High dimension of the unknown, inverse problems, profile estimation
e Regularization by smoothness priors.
e Dimension reduction.

Chaotic behaviour of models, model error.

e Assimilation, Kalman filter.

e Models are right, but not very accurate.
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High dimensional spaces are very empty

Volume of hyper sphere/volume of hyper cube
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The plot shows the volume of a hyper
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divided by the volume of a hyper cube oo
(2r)7.

0.3

Random walk type methods are needed to
explore the space of statistical significant
probability. Otherwise we will always be lost
at some distant corners. > r 5 s pa b3 p

dimension

0.2

0.1r
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Terminology

e Observations y;, model states x;, parameters 0.

e State space representation.

Ve = F(x¢, 0) + €; obsevation equation

X¢ = M(x¢—1,0) + E; model evolution

e Hierarchical statistical model

p(ytlxt, 0) observation model
p(x¢lxt—1,0) process model
p(0) parameter model

e Bayes formula.

n

plx1:n, Blyrn) o | | p(yelxe, 0)p(xelxe—1,0)p(6)
t=1
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Statistical analysis by simulation

e We are interested in the uncertainty distribution of the unknown model parameter
vector 0 given the observational data y and the model: p(8]y, M).

e This distribution is typically analytically intractable.

e We can still simulate observations from p(y|0, M).

e Statistical inference is used to define what is a good fit. Parameters that are
consistent with the data and the modelling uncertainty are accepted.
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Markov chain Monte Carlo — MCMC

Random walk in probability distribution

e Simulate the model while sampling the
parameters from a proposal distribution.

o Accept (or weight) the parameters o
according to a suitable goodness-of-fit
criteria depending on prior information and
error statistics defining the likelihood
function.

e The resulting chain is a sample from the

Bayesian posterior distribution of
parameter uncertainty.
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Posterior distributions

While sampling the model using the MCMC, we get:

g e e Posterior distribution of model parameters.

predictive distribution of model

‘ e Posterior distribution of model predictions.

‘95% predictive envelope
a1

o [55% envlope for e otservations | e Posterior distribution for model comparison.

dv/dt = (8" 2°-p-QIV-pz)Y
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Terminology for modelling with MCMC methods

The observation model (in non state space form) is
y = f(xI0) +e,

observations = model + error.

Likelihood function for independent Gaussian errors corresponds to a simple quadratic
cost function, with

v f(x 2
p(y10) ocexp{—izf (y sz( i10)) }

155(0)
=] eXp{2 02 } 0

where SS(0) = —2log(p(y|0)), the log-likelihood in "sum-of-squares" cost function
format. For calculating the posterior, we also need to account 55,i(60) = —2log(p(0)),
the prior "sum-of-squares".
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Metropolis-Hastings algorithm

Random walk Metropolis-Hastings algorithm with Gaussian proposal distribution (and
Gaussian likelihood).

e Propose new parameter value 0pr0p = Ocurr + &, where & ~ N(0, Zr0p) is drawn
from the proposal distribution.

e Accept Opr0p With probability c,

o‘(ecurry eprop) =1N exp{ — E (Ss(eprop) B Ss(ecurr)>

2 02

1
— § (SSpri(eprop) - Sspri(ecurr)> }

o Efficient proposal distribution = adaptive tuning of .o, by AM and DRAM
algorithms.

Haario, et al, Stat.Comp. 2006.
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Short chains and adaptation

e |t is important to make short chains as efficient as possible. Efficient: produce
estimates with small Monte Carlo error.
05 mean ?f the 1. par‘ameter 95% quam"e
——mh 1 ‘ ‘
| —am | :;nmh
——dram|| I
0'4\q —ram 0.99 ——dram
‘ —ram
0.98 B
0.97 — 1
~—
0.96 e
0.95
o ‘ ‘ ‘ ‘ 0.4 ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

simulation index

simulation index

Short MCMC chain repeated 1000 times with different algorithms, Gaussian 10

dimensional target and too large initial covariance.
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Short chains and adaptation
e But, adaptation might slow the convergence.

mean of the 1. parameter

07 ‘ ‘ 95% quantile
——mh 1 . . .
——am
0.6F - H
dram 0.99
~——ram
0.98
0.97
0.96 |
0.95 —
o ‘ ‘ ‘ ‘ 008 el ‘ ‘
0 1000 2000 3000 4000 5000 7 0 1000 2000 3000 4000 5000
simulation index simulation index

Same as in the previous slide, but now with more optimal initial proposal, Gaussian 10
dimensional target, near optimal initial covariance.
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Faster MCMC: parallel chains

e Random walk MCMC is by nature 1
sequential, and it is generally more o [ S b
efficient to run one long chain than | | |
many Short independent chains. w(//,,uE:IﬁLv:,iny\m] ww,mEyﬁ%T/Evymm oo | . >Eyt<l;/l,jfzfnymw
e In parallel adaptive MCMC, the | | |
. . . . ACCEPT / REJECT AQCEPT / REIECT ACCEPT / REIECT
adaptation is done over the points in o= w1, (000)/7(0)| |2 = min(t <(0c0)/09) ~:muwmeJ
all chains and they share one common
adapted proposal covariance. UPDATE COVARIANGE
Bisy =0, .ﬁ(ﬁ, 8:)

e Communication between the chains SRR T ST 2
can be asynchronous.
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Faster MCMC: early rejection

Idea: evaluate the likelihood in parts and check after each part if the proposed
parameter value can be rejected.

COST FUNCTION VALUE

Cumulative cost function evaluated after each month

during one year climate model simulation

6
MONTH

time to stop the simulation

1200

1000

800

600 -

400

200

1 2 3 4 5 6 7 8 9 10 11
Early rejection month

proportion of stopped runs by month

This simple trick saved 10%—-80% of CPU time in different test cases.
Solonen, et al, Bayesian Analysis, 2012.
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MCMC Toolbox for Matlab
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http://helios.fmi.fi/"lainema/mcmc/
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http://helios.fmi.fi/~lainema/mcmc/

MCMC toolbox for matlab

model.ssfun = @mycostfun

data = load(’datafile.dat’);

parameters = {
{’par1’, 2.3 }
{’par2’, 1.2 }

I

options.nsimu = 5000;

options.method = ’am’;

[results,chain] = mcmcrun(model,data,parameters,options);

mcmeplot (chain, [],results)
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Some MCMC theory

e Let O be a parameter vector having values in a parameter space ©, indexing family
of possible probability distributions

p(yl0)

describing our observations y.

e If p(0) is a prior probability density describing our prior beliefs about 6, then Bayes
formula gives the posterior 7t in terms of likelihood and prior

B _ plyl®)p(6)
7(6) := p(6ly) = [ p(y18)p(8) d6

e In Markov chain Monte Carlo methods (MCMC) we construct a Markov chain
which has our parameter space © as its state space and 7t as its limiting stationary
distribution.

e That means we have a way of sampling values from posterior distribution 7t and
therefore make Monte Carlo inference about 0 in form of sample averages and
density estimates.
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Markov chain Monte Carlo — MCMC

e A Markov chain is described by a transition kernel P(0, d6’) that gives for each
state 0 the probability distribution for the chain to move to state d®’ in next step.
For ease of exposition let us assume that for each distribution the corresponding
density function exists and denote the transition density as p(0,0’).

e MCMC methods produce chains that are aperiodic, irreducible and fulfill a
reversibility condition, also called 'detailed balance equation':

7(0)p(0,0") =n(0')p(6’,0) 0,0" €O.

e If 7t is the initial distribution of the starting state, then the intensity of going from
state O to state 0/ is same as that of going from 0’ to 0.

e Direct consequence of the reversibility is
Jn(e)p(e, 0')d0 =m(0’), forall 0’ € ©

that means that 7t is in fact the stationary distribution of the chain and we can use
a sample from the chain as a random sample from distribution 7.
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The Metropolis-Hastings algorithm

e In Metropolis-Hastings algorithm we generate a Markov chain with transition
density

p(6,0') =q(0,0)x(0,0"), ©#06’
p(0,0) =1 —Jq(e, 0)(6,0") do
for some proposal density q and for acceptance probability .
e The chain is reversible if and only if
7(0)q(0,0")x(0,0") = m(0')q(0’,0)x(0’, 0).
e Which leads to choose « as

«(0,0") :min{l,n(e/)q(el'e)}.

(6)q(6,0")

e Usually ® ¢ RY, but the reversibility condition can be formulated in more general
state space.
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Notes:

e In MH algorithm we need to calculate the posterior ratio 7t(6’)/7t(0) in the
formula for o but Bayes formula gives this in terms of likelihood and prior as

plyl0")p(6")
plyl6)p(6)

and the constant of proportionality disappears.

e We need some theory of Markov chains but with important simplifications: we
know by construction that the stationary distribution 7t exists. Also we are able to
choose the initial distribution as we like. That gives us simple ways to prove
important ergodic properties of the MH chain: The law of large numbers that
gives us permission to use sample averages as estimates and the central limit
theorem which gives us the convergence rate for the algorithms.
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The algorithm

1. Choose initial values 8y and proposal density q.

2. Using current value of the chain 0, propose a new value 6’ using proposal
distribution g(6;, -).

3. Generate a random number v uniform on [0, 1] and accept the new value if

7(0")q(0’, 9:’)}

U min {1' (0;)9(67, 0

4. If accepted set 0,7 =0/, if not 0;,1 = 0,.

5. Go to (ii) until enough values have been sampled.
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Nonlinear model fitting

e Consider a nonlinear model describing observations y by control variables x and

parameter vector 0:
y="Ff(x,0)+e, e~N(O, Ic?).

e In 'classical’ theory we find the optimal © by minimizing the sum of squares

SS = Z f(x;,0))?

which leads to a nonlinear minimization problem. Confidence regions for 0 are
usually obtained by linearizing the likelihood function and by asymptotic
arguments.

e In Bayesian approach we can get a similar fit by using non-informative uniform
priors for the parameter 0 and the inference is done with the posterior distribution
of 0 obtained with MCMC.

e For the error variance a convenient choice for prior information is thru 'precision’
T=02
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Implementation

Just need to write a routine to return the sum-of-squares for given parameter and data.

L. Initialization. Initial values for 0, ng and S2. Proposal distribution g. Adaptive
strategies for g useful here.

2. MH step: Generate a new value for 0 from ¢ and calculate sum-of-squares for it,
SShew. New value is accepted if SS,ew < SSoiq or if

u< exp {_ L (Ssnew - Ssold)}

202
where u ~ U(0, 1) and o2 is current value of the error variance.

3. Update 02 with a draw from

ng+n n053+55

r '
( 2 2

).

4. Go to (ii) until enough values have been sampled.
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Example: Oxygen consumption in lake Tuusulanjarvi

d[O,] T—20
— K
dt [02] e 1151

e Data: measured oxygen concentrations
and temperatures during ice season.

e Parameters: k, oxygen consumption Sy
rate, 0, temperature coefficient.

1k ©starting point

e On right: a plot of the generated
MCMC chain for the two parameters. 055
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Reversible jump Metropolis-Hastings algorithm

e The detailed balance equation can also be formulated in general state space. For
the Metropolis-Hastings algorithm to work it must only accept states from where
there is a positive probability to do a reversible move back to the original state.

e For the reversible jump Metropolis-Hastings algorithm the state space is written as
E={(ko®) kex 00 coyl,

where K is enumerable model space and 8(k) € @y is the parameter space of
model k. The dimension of 8(%) can vary with k.

e The posterior distribution can be factorized as
(0, k) = m(0W) |k)m( k)

and we might be interested in the posterior probabilities of different models 7t(k)
of draw some conditional or marginal conclusions about different models in terms
of (0K |k) or m(0(K)).
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Implementing RIMCMC

e We need a reversible move between models i and j. This is accomplished by a
bijective function gj that transforms the parameters

gl.j(e(i), u(i)) — (9(}']7 u(j)),
and retains the dimensions
d(®) +d(u'?) =d(eY)) + d(uY)).

e The inverse transform g,.j_1 =: gjk gives the move to the other direction. Variables
u and u’ are random quantities used in proposing change in the components and
as extra components when going to a higher dimension.

o If q;j-(e(i), ul)) is the probability density for the proposed move and p(i, j) is the
probability for the move i — j the accepting probability can be written as

(Xij(e(i)’e(j)) —
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Step of the algorithm:

When being in model k; with parameter vector Gfk’):
1. Choose a new model j by drawing it from distribution p(/,-). Propose a value for
the parameter 0U) by generating u from distribution qk,.j(e}k’), u).
2. Accept the move with probability (**):
ki 1 =j and 9;_’;’{1) =0U),
3. If the move is not accepted, stay in the current model: k1 = k; and
e(kr‘+1) _ e(kr‘)
i1 — Y -
In step (i) it is also possible to choose stay in the current model and do a standard
Metropolis-Hastings step.
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RIMCMC Example
Model 1: (01, 05) € R?, Model 2: 6 € R.

Move 1 — 2
01 +6, 01 —07 (0, u)
2 2 T

g12((01,02)) :<

Move 2 — 1
g1(0,u) =(0+u,0—u).

Make a move to another model with probability % Draw a random number u from
distribution g. Ratios used in acceptance are now (01,05) — 6:

72(8)39(u

) _ m(9402)q(915%2) 1
71(01,0 )%

m1(01, 62) 2

0(6, u)
0(01, 02)

and for © — (01, 05):
(0 + u, 0 —u)

m2(0)q(u)

This is reasonable if the ratio 711 /71, is easy to calculate.
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RIJMCMC Example (cont.)

Standard 1 dimensional random walk, with
'extra’ jumps or changes of level. Let

o) = (b

1C21"

-1 b, k)

be the places and sizes of these jumps.
The likelihood for the model is

p(x|b, c) x exp {—

n

2d 4

=

l(AXi — Ci]-{bl.})z} :

25

051

-0.5
0

Random walk with jumps
T T T

=)
T

L
0.5

L
0.6

L
0.7

L
0.8
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RIMCMC Example (cont.)

Let the prior for the locations of the jumps be uniform over the observational interval
and the prior for the number of jumps be Poisson. Let prior sizes of the jumps be
Gamma with unknown sign and suppose that sizes and places are independent.

Ak
p(k) = ﬂe A
Xoc—le—x/ﬁ
p(lcl) =T(c, o, B) = W

Reversible jump MH: At every step we have 3 alternatives

1. Stay at the current model and do a standard MH-step componentwise for every
step present.

2. Add one step at random location and propose a size for the jump there.

3. Remove one step by random choice among present jumps.
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RIJMCMC Example (cont.)

This gives us the acceptance probabilities

2

104 (b c) = min<l, ex AX(kH) _ @ |cl*"*A(n — k) V2rd

kk+1(bikr1), » €XP 2d B 2BT (o) (k + 1)2 '

—AX2 2n
_ k) el 2k=B*T ()

Ok k—1(bry, €) = min< 1, ex + — ,

kk—1(bx), €) { p( 2d B) (n—k + 1)Ac|*1v2nd

c(Axiy — A i

(Xb(b(i)vb(j)) = min{l, exp{ ( X(J)d X( ))} }

and

/

ac(c,c’) = min{l, exp <;j (2Ax(jy(c' —c) — 2 + (c’)2))

x—1
c . el —lc
X
c P B

'

)}
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RIMCMC Example (cont.)

MCMC chain Number of jumps posterior
1 T 1 T T
08| 1 oo 4
'
0.6 i 4 osr 4
. ; i
0.4 . - i : 1 o7f 4
!
02| R i 4 o6t 4
oF 4
-0.2F 4
-0.4 4
-0.6 4
-08f H 4
o . . . . . . . . .
0 0.1 02 03 04 05 06 07 08 0.9 1
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RIJMCMC Example (cont.)

Probability for a jump Jump size distribution for jump at 0.8
1 T T 4 T T T T T

0.9f 1 asl g

08F 4
3t 4

07 4
25} 4

0.6 4
051 4 2t 4

0.4 4
15F N

03| 4
1+ 4

0.2f 4
05f 4

0.1f 4
0.1 02 03 0.4 05 06 0.7 038 0.9 0 0.1 0.2 03 04 05 06 0.7 0.8 0.9 1
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RIJMCMC Example (cont.)
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Generated chain and 2d density for the first two jumps.
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Toy example: Stochastic Lorenz 95 model

e The next example demonstrates the difficulties in using non-linear models to
describe dynamical systems. Chaotic behaviour, initial values, parameter
estimation.

e |t is a common bench mark model for studying data assimilation, e.g. state
estimation with large dimensional model states combined with (relatively) limited
amount of observations, such as in numerical weather prediction.

e Without going into details, some solutions to the parameter estimation problem
("tuning of the model") are presented.
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Stochastic Lorenz 95 model

Nature:
Jk
dxy hc
i (Xk—2_Xk+1)_Xk+F—F. > oy
j=J(k—1)+1
dy; c hc
d—tj = —cbyjir (Y2 —yj—1) — e+ P+ Xy iy
Forecast model-
dx
gr = %1 (xk—2 — xk41) — xx + F — g(xx, 0).

withk=1...K,j=1...JK,K=40,J=8,F=10,h=1,¢c=b=10 and
g(xk, 0) = 00 + O1x.
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Stochastic Lorenz 95 model

10 T
= = =forecast model
slow state

fast state

state variable

-2

-4

-6
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Stochastic Lorenz 95 model

We have 40 slow state variables -®- and 320 fast state variables -e-, whose effect is
parametrized in the forecast model.

Good test case to study:
e Estimation methodologies. 2 NATURE.
e Different parameterizations =) P Z
g(xx, 6). ‘ ot
e Modeling error.

FORECAST MODEL:

e Filtering and ensemble
methods.

Wilks, D.: Effects of stochastic parametrizations in the Lorenz '96 system, Quart. J. Roy. Meteor. Soc., 131(606), 389—407, 2005.
doi:10.1256/qj.04.03
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Attempt 1: Lorenz 95 MCMC by summary statistics

01255+ s . -

S e s . .[—=200days

01l
o.os:o. 5o
< 0.06 .'__ "

00aN

0.02} ..-"

—O

e Chaoticity: small perturbation in initial values or in parameters causes large
changes in model trajectories.
e Estimation of static parameters is difficult, and even not very well defined problem.

Hakkarainen, et al, NPG 2012.

40/43



Attempt 2: Lorenz 95 with Kalman filter likelihood

e Using Kalman filter for defining the likelihood by model short term predictions
while accounting for the model error and chaotic behavior.

Lorenz95 system

— -~ Not assimilated
Assimilated
. ® Observations

State variable

Right: scatter plot of parameter pairs from MCMC runs using 10 (blue), 20 (red), 50
(black) and 500 (green) day simulations.
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Attempt 3: Lorenz 95 model with EPPES

Ensemble Kalman filter for states, parameter perturbations from proposal distribution
that is adapted. On left, each column of points corresponds to proposed parameter
values in one time window of the sequential estimation procedure. On right, forecast
skill is calculated over a grid, with an ellipse and dot showing the final estimated
parameter proposal.

parameter evolution "6 day" forecast skill

0.3

0.25

0.2

0.15

& ot

0.05

‘ ‘ ‘ ‘ ‘ o L] L]
50 100 150 200 250 1 1.2 1.4 1.6 1.8 2 22 24 26
Ensemble number

Laine, et al, Q.J.R.Met.Soc. 2012.
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Remote sensing of greenhouse gases. From ozone to methane and carbon
dioxide.

Separate slides by Johanna Tamminen / FMI
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