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Motivation

efficient algorithms for finding a Tikhonov minimizer

Question: How plausible is the Tikhonov minimizer ?

⇒ tools for assessing the reliability of the inverse solution

Bayesian inference is one principled framework for uncertainty
quantification.
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starting point: Bayes’ formula, i.e., for two random variables X and Y
the conditional probability of X given Y is given by

pX |Y (x |y) =
pY |X (y |x)pX (x)

pY (y)
,

pY |X (y |x): likelihood function

pX (x): prior distribution
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finite-dimensional inverse problem

F (X ) = Y ,

X , Y : the unknown coefficient and the noisy data

F : Rm 7→ Rn: forward map

regard the unknown X and the data Y as random variables, and
encode the prior knowledge in a probability distribution.

e.g. given X = x , Y follows a Gaussian distribution with mean F (x)
and variance σ2I, then

pY |X (y |x) =
1

(2πσ2)n/2 e−
‖F (x)−y‖2

2σ2 .
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the unnormalized posteriori p(x , y) defined by

p(x , y) = pY |X (y |x)pX (x),

and shall often write
pX |Y (x |y) ∝ p(x , y)

the posteriori pX |Y (x |y) up to a multiplicative constant

pX |Y (x |y) holds the full information about the inverse problem

⇒ calibrating the uncertainties of the inverse solutions.

6 / 33

http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk


two building blocks

likelihood function pY |X (y |x)
contains the information in the data y , or more precisely the
statistics of the noise in the data y

prior distribution pX (x)
encodes a prior knowledge available about the problem before
collecting the data.
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likelihood function pY |X (y |x)⇐ the noise statistics

all sources of errors (e.g., these for the forward model F ) are
lumped into the data y .

a careful modeling and account of all errors in the data y is
essential for extracting useful information

The most popular noise model is the additive Gaussian model

y = y† + ξ,

ξ ∈ Rn is a realization of i.i.d. Gaussian r.v. N(0, σ2)

ξ is independent of the true data y† (and hence x)⇒

pY |X (y |x) = (2πσ2)−
n
2 e−

1
2σ2 ‖F (x)−y‖2

.
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The prior pX (x) encodes the prior knowledge about the sought-for
solution x in a probabilistic manner.

the prior knowledge: expert opinion, historical investigations,
statistical studies and anatomical knowledge etc.

Since inverse problems are ill-posed due to lack of information,
the careful incorporation of all available prior knowledge is of
utmost importance in any inversion technique

the prior plays the role of regularization in a stochastic setting

Hence, prior modeling stays at the heart of Bayesian model
construction, and crucially affects the interpretation of the data.
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One very versatile prior model is Markov random field

pX (x) ∝ e−λψ(x),

where ψ(x) is a potential function dictating the interaction energy
between the components of the random field x

The scalar λ is a scale parameter, determining the strength of
the local/global interactions.
It plays the role of a regularization parameter in classical
regularization theory, and hence its automated determination is
very important.
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likelihood pY |X (y |x) and the prior pX (x) may contain unknown
parameters, e.g.,

pY |X (y |x) = pY |X ,Υ(y |x , τ) and pX (x) = pX |Λ(x |λ)

τ ,λ: precision (inverse variance) and the scale parameter

These parameters are generically known as hyperparameters

Hierarchical Bayesian modeling provides an elegant approach to
choose these parameters automatically

12 / 33

http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk


hierarchical Bayesian modeling

view λ and τ as random variables with their own priors

determine them from the data y

convenient choice: conjugate distribution

For both λ and τ , the conjugate distribution is given by a Gamma
distribution:

pΛ(λ) = G(λ; a0,b0) =
ba0

0

Γ(a0)
λa0−1e−b0λ,

pΥ(τ) = G(τ ; a1,b1) =
ba1

1
Γ(a1)

τa1−1e−b1τ .

the parameter pairs (a0,b0) and (a1,b1) determines the range of
the prior knowledge on the parameters λ and τ

noninformative prior is often adopted, which roughly amounts to
setting a0 to 1 and b0 close to zero
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posterior distribution pX ,Λ,Υ|Y (x , λ, τ |y)

pX ,Λ,Υ|Y (x , λ, τ |y) ∝ pY |X ,Υ(y |x , τ)pX |Λ(x |λ)pΛ(λ)pΥ(τ).
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Connection with Tikhonov regularization
example: Gaussian noise model + Laplace prior

pY |X ,Υ(y |x , τ) ∝ τ− n
2 e−

τ
2 ‖F (x)−y‖2

,

pX |Λ(x |λ) ∝ λme−λ‖x‖1 .

In case of known λ and τ , a popular rule of thumb is to consider the
maximum a posteriori (MAP) estimate xmap, i.e.,

xmap = arg max
x

pX ,Λ,Υ|Y (x , λ, τ |y)

= arg min
x

{
τ
2 ‖F (x)− y‖2 + λ‖x‖1

}
.

the functional in the curly bracket is
1
2‖F (x)− y‖2 + λτ−1‖x‖1,

Tikhonov regularization + sparsity constraint, with α = λτ−1.

A Tikhonov minimizer is an MAP estimate of some Bayesian formulation.
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unknown parameters λ and τ ⇒ hierarchical model
conjugate prior on λ and τ ⇒ posterior distribution

pX ,Λ,Υ|Y (x , λ, τ |y) ∝ τ n
2 +a1−1e−

τ
2 ‖F (x)−y‖2

· λm+a0−1e−λ‖x‖1 · e−b1τ · eb0λ.

ways of handling the posterior distribution pX ,Λ,Υ|Y (x , λ, τ |y)

the joint maximum a posteriori estimate (x , λ, τ)map, i.e.,

(x , λ, τ)map = arg min
x,λ,τ

J(x , λ, τ),

where the functional J(x , λ, τ) is given by

J(x , λ, τ) = τ
2 ‖F (x)− y‖2 + λ‖x‖1 − ã0 lnλ+ b0λ− ã1 ln τ + b1τ.

the augmented Tikhonov regularization for sparsity constraint
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augmented Tikhonov regularization

J(x , λ, τ) = τ
2 ‖F (x)− y‖2 + λ‖x‖1 − ã0 lnλ+ b0λ− ã1 ln τ + b1τ.

the first two terms recover Tikhonov regularization

the rest provides the mechanism for automatically determining
the regularization parameter.

the augmented approach does select the hyperparameters λ
and τ automatically, but it remains a point estimate and ignores
the statistical fluctuations around the mode.
⇒ full Bayesian treatment
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Bayesian solution: pX ,Λ,Υ|Y (x , λ, τ |y)
distinct features

pX ,Λ,Υ|Y (x , λ, τ |y) is a probability distribution, and encompasses
an ensemble of plausible solutions that are consistent with the
given data y (to various extent).

µ =

∫
xpX |Y (x |y)dx ,

C =

∫
(x − µ)(x − µ)tpX |Y (x |y)dx .

18 / 33

http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk


0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

 

 

MAP
truth
uncertainty

19 / 33

http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk


distinct features

the crucial role of proper statistical modeling in designing useful
regularization formulations for practical problems.

it provides a flexible regularization since hierarchical modeling
can partially resolve the nontrivial issue of choosing an
appropriate regularization parameter.
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posteriori p(x) lives in a very high-dimensional space⇒
noninformative
⇒ compute summarizing statistics, e.g., mean µ and covariance C

µ =

∫
xp(x)dx and C =

∫
(x − µ)(x − µ)tp(x)dx .

very high-dimensional integrals, and quadrature rules are inefficient
e.g., m = 100, 2 points/dir⇒ 2100 ≈ 1.27× 1030 points
more efficient approach

Monte Carlo methods, especially Markov chain Monte Carlo
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Monte Carlo simulation

draw a large set of i.i.d. samples {x (i)}N
i=1 from the target

distribution p(x)

approximate the expectation Ep[f ] of any function f : Rm → R by
the sample mean EN [f ]

EN [f ] ≡ 1
N

N∑
i=1

f (x (i))→ Ep[f ] =

∫
f (x)p(x)dx as N →∞.

the Monte Carlo integration error eN [f ] by

eN [f ] = Ep[f ]− EN [f ] ≈ Varp[f ]
1
2 N−1/2ν,

ν ∼ N(0,1)

the error eN [f ] is O(N−1/2)
with a constant ∼ the variance of the integrand f
the estimate is independent of the dimensionality m
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Generating a large set of i.i.d. samples from an implicit and
high-dimensional joint distribution is highly nontrivial.

nonlinear inverse problems and nongaussian models

importance sampling

q(x) is an easy-to-sample p.d.f. and close to the posteriori p(x)
approximate the expectation of the function f w.r.t. p(x) by∫

f (x)p(x)dx =

∫
f (x)

p(x)

q(x)
q(x)dx ≈ 1

N

N∑
i=1

f (x (i))wi ,

where the i.i.d. samples {x (i)}N
i=1 are drawn from the auxiliary

distribution q(x), and the weights wi = p(x (i))
q(x (i))

.
The efficiency relies on the quality of the approximation q(x) to the
true posterior distribution p(x)
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example: nonlinear forward model F (x) = y , with a Gaussian noise
model and a smoothness prior, i.e.,

p(x) ∝ e−
τ
2 ‖F (x)−y‖2−λ2 ‖Lx‖2

,

A natural candidate model q(x) is a Gaussian approximation around
the mode x∗. One approach is to linearize the forward model F (x)
around the mode x∗:

F (x) = F (x∗) + F ′(x∗)(x − x∗) + h.o.t.,

which gives the following Gaussian approximation

q(x) ∝ e−
τ
2 ‖F

′(x∗)(x−x∗)−(y−F (x∗))‖2−λ2 ‖Lx‖2
.

A more refined approach: the full Hessian

‖F (x)− y‖2 ≈ ‖F (x∗)− y‖2 + 2〈F ′(x∗)∗(F (x∗)− y), x − x∗〉
+ 〈F ′(x∗)(x − x∗),F ′(x∗)(x − x∗)〉
+ 〈F ′′(x∗)(F (x∗)− y)(x − x∗), x − x∗〉.
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Markov chain Monte Carlo: general-purposed approach for exploring
posteriori p(x)

basic idea: given a target distribution p(x), construct an
aperiodic and irreducible Markov chain such that its stationary
distribution is p(x).

By running the chain for sufficiently long, simulated values from
the chain can be regarded as dependent samples from the target
distribution p(x), and used for computing summarizing statistics.

Metropolis: simulating energy levels of atoms in a crystalline
structure

Hastings: statistical problems
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The Metropolis-Hastings algorithm is the most basic MCMC method
1: Initialize x (0) and set N;
2: for i = 0 : N do
3: sample u ∼ U(0,1);
4: sample x (∗) ∼ q(x (i), x (∗))
5: if u < α(x (i), x (∗)), c.f., (??) then
6: x (i+1) = x (∗);
7: else
8: x (i+1) = x (i);
9: end if

10: end for

the uniform distribution U(0,1)

p(x): the target distribution

q(x , x ′) is an easy-to-sample proposal distribution
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Having generated a new state x ′ from the distribution q(x , x ′), we
then accept this point as the new state of the chain with probability
α(x , x ′) given by

α(x , x ′) = min
{

1,
p(x ′)q(x ′, x)

p(x)q(x , x ′)

}
.

However, if we reject x ′, then the chain remains in the current state x .

p(x) enters the algorithm only through α via the ratio p(x ′)/p(x),
so a knowledge of the distribution only up to a multiplicative
constant is sufficient for implementation

if q is symmetric, i.e., q(x , x ′) = q(x ′, x), α(x , x ′) reduces to

α(x , x ′) = min
{

1,
p(x ′)
p(x)

}
.

The Metropolis-Hastings algorithm guarantees that the Markov chain
converges to the target distribution p(x) for any reasonable proposal
distribution q(x). There are many possible choices for the proposal
distribution q(x , x ′), the defining ingredient of the algorithm.
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random walker sampler

If q(x , x ′) = f (x ′ − x) for p.d.f. f , then x (∗) = x (i) + ξ, ξ ∼ f

Markov chain is driven by a random walk

f : uniform, multivariate normal or t-distribution

With i.i.d. Gaussian distribution N(0, σ2), x (∗)
j = x (i)

j + ξ, with
ξ ∼ N(ξ; 0, σ2). The variance σ2 of the proposal distribution f
controls the size of the random walks, and should be carefully
tuned to improve the MCMC convergence and estimation
efficiency.

it is necessary to tune σ2 carefully to achieve good mixing.
Heuristically, the optimal acceptance ratio should be around 0.25 for
some model problems.
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independent sampler q(x , x ′) = q(x ′)

the acceptance probability α(x , x ′)

α(x , x ′) = min{1,w(x ′)/w(x)},

w(x) = p(x)/q(x) is the importance weight function.

There are many different ways to generate the independent
proposal distribution q(x), e.g., Gaussian approximations from
the linearized forward model, coarse-scale/reduced-order
representation
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the first samples are poor approximations as samples from p(x)

discards these initial samples (burning-in period)

assess the convergence of the MCMC chains

Brooks and Gelman statistics 1998: Suppose we have L Markov
chains, each of N samples, with the i th sample from the j th chain
denoted by x (i)

j . Then we compute

V̂ = N−1
N W +

(
1 + 1

L

) B
N ,

W = 1
L(N−1)

L∑
j=1

N∑
i=1

(x (i)
j − x̄j )(x (i)

j − x̄j )
t,

B
N = 1

L−1

L∑
j=1

(x̄j − x̄)(x̄j − x̄)t,

which represent respectively the within and between-sequence
covariance matrix estimates. One can then monitor the distance
between V̂ and W to determine the chain convergence.
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If the state space is high dimensional, it is rather difficult to
update the entire vector x in one single step since the
acceptance probability α(x , x ′) is often very small.

to update a part of the components of x each time and to
implement an updating cycle inside each step

block Gauss-Seidel iteration in numerical linear algebra

The extreme case is the Gibbs sampler Geman-Geman, 1984

which updates a single component each time.
suppose we want to update the i th component xi of x , then we
choose the full conditional as the proposal distribution q(x , x ′), i.e.,

q(x , x ′) =

{
p(x ′i |x−i ) x ′−i = x−i ,

0 otherwise,

where x−i denotes (x1, . . . , xi−1, xi+1, . . . , xm)t.
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With this proposal, the acceptance probability α(x , x ′) is given by

α(x , x ′) =
p(x ′)q(x ′, x)

p(x)q(x , x ′)
=

p(x ′)/p(x ′i |x−i )

p(x)/p(xi |x ′−i )

=
p(x ′)/p(x ′i |x ′−i )

p(x)/p(xi |x−i )
=

p(x ′−i )

p(x−i )
= 1,

these proposals are automatically accepted.
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Gibbs algorithm
1: Initialize x (0) and set N.
2: for i = 0 : N do
3: sample x (i+1)

1 ∼ p(x1|x (i)
2 , x (i)

3 , . . . , x (i)
m ),

4: sample x (i+1)
2 ∼ p(x2|x (i+1)

1 , x (i)
3 , . . . , x (i)

m ),

5:
...

6: sample x (i+1)
m ∼ p(xm|x (i+1)

1 , x (i+1)
2 , . . . , x (i+1)

m−1 ),
7: end for
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example: Gibbs sampler for Gaussian noise + smoothness prior
p(λ) ∝ λa0−1e−b0λ on the scale parameter λ, i.e., posteriori

p(x , λ) ∝ e−
τ
2 ‖Ax−y‖2

· λm
2 e−

λ
2 x t Wxλa0−1e−b0λ,

where the matrix W encodes the local interaction structure
full conditional p(xi |x−i , λ)

p(xi |x−i , λ) ∼ N(µi , σ
2
i ), µi =

bi

2ai
, σi =

1√
ai
,

with ai and bi given by

ai = τ

n∑
j=1

A2
ji + λWii and bi = 2τ

n∑
j=1

µjAji − λµp,

and µj = yj −
∑

k 6=i Ajk xk and µp =
∑

j 6=i Wjixj +
∑

k 6=i Wik xk . Lastly,
we deduce the full conditional for λ:

p(λ|x) ∼ G
(
λ; m

2 + a0,
1
2 x tWx + β0

)
.
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