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Abstract

These lecture notes are written for the theoretical part of the course ”Bayesian inver-
sion”given at University of Helsinki during Spring 2016. We rely on several references, but
most important are the extensive review paper [2] by Andrew Stuart and the lecture notes
[1] by Dashti and Stuart. The notes are updated (nonlinearly) as the course progresses.
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1 Short motivation

Consider an indirect physical measurement, which can be approximatively modelled by a
linear equation

m = Ax. (1)

Above, x,m ∈ Rn describe the unknown and the measurement, respectively, and matrix
A ∈ Rn×n models how these two quantity are related via physics. Among inverse problems
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research community, we are in the business of solving x given the measurement data ideally
modelled by m. This task is made non-trivial by considering problems where the underlying
mathematical model (approximated by (1)) is ill-posed. The classical definition of a well-
posed problem by Hadamard states that (a) a solution must exist and that it is (b) unique.
Moreover, the (c) solution has to depend continuously on the data. An ill-posed problem
violates at least one of these conditions.

The violation of the stability condition (c) typically leads to numerical challenges in inverse
problems that for problem (1) appear as a high condition number of matrix A. Recall that
the condition number of A is defined by

cond(A) =
λmax
λmin

.

For example, let us assume that λmax = 1 and λmin = ε, where λmax and λmin correspond
the largest and smallest eigenvalue, respectively, and ε > 0 is very small. Any real-life
measurement is contaminated by some noise. Hence, it is reasonable to assume that our
measurement is obtained as

mδ = Ax0 + δ,

where x0 describes the ’true’ value and δ describes the measurement noise. Notice that we
do not know δ exactly and in the best case scenario we might have some estimate concerning
its size/norm. Even if A is invertible, a naive reconstruction by

A−1mδ = x0 +A−1δ =: x0 + δ̃

easily leads to useless approximation since in the worst case the error

‖δ̃‖2 ≈
‖δ‖2
ε

can be arbitrarily large. This illustrates one key perspective of inverse problem theory: how
to stabilize the reconstruction process while maintaining acceptable accuracy.

The theory related to deterministic problems like (1) is called regularization theory and is
discussed in more detail in the usual Inverse problems course. One of the fundamental ideas
of regularization theory is to approximate the problem (1) by a stable one. In the classical
Tikhonov regularization (1) is replaced by a variational problem

min
x∈Rn

(∥∥∥Ax−mδ
∥∥∥2

2
+ α ‖x‖22

)
. (2)

The solution to (2) is given by

xδα = (A>A+ αI)−1A>mδ =: Rαm
δ,

where the reconstruction matrix Rα has a modified eigenvalue structure compared to A−1.
Most importantly, we have

λmin(Rα) =
λmin

λ2
min + α

and hence the reconstruction is more stable (reconstruction error is comparable to 1
λmin(Rα)).

However, we have induced new kind of reconstruction error. Namely, we have that

Rαm
δ = x0 + (RαA− I)x0 +Rαδ



where the two error terms on the right hand side are approximately of size

‖(RαA− I)x0‖2 ≈
α

λ2
min + α

‖x0‖2 (3)

and

‖Rαδ‖2 ≈
λmin

λ2
min + α

‖δ‖2 . (4)

Important effect is this: if α is increased, the first error term (3) increases (becoming compa-
rable to ‖x0‖2!). Meanwhile, if α is decreased, the second error term explodes. The optimal
strategy is a balance between the two errors. The key observation is that the more accurate
information you have related to the unknown x0, the noise δ and structure of the problem
(here: eigenvalue structure), the more effective you can make your regularization strategy.

The topic of this course, Bayesian inversion, rephrases the problem (1) as a question of
statistical inference: consider a problem

M = AX + E , (5)

where the quantities describing our measurement, unknown and noise are replaced by random
variables. Here, X : Ω → Rn and M, E : Ω → Rd, where Ω is our probability space.
Randomness in this framework describes our lack of knowledge related to their exact values.
The degree of our information is encoded into their probability distributions. The solution to
(5) is so-called posterior distribution, i.e., the conditional probability of X given measurement
M = mδ.

The randomness (or uncertainty) can appear due to several effects in a practical mea-
surement setting. It can appear via some statistical information which is available about the
unknown or the model. Randomness can also reflect the lack of information about correct
parameter values in the model. Ultimately, the noise in any practical measurement is always
random.

In practise, the posterior distribution is obtained via the Bayes formula which states, using
probability densities, that

πpost(x | m) =
πlike(m | x)πX(x)

πM (m)
, (6)

where πpost, πX and πM are the posterior, prior and marginal probability densities (we of
course need to assume they exist). The likelihood density πlike(m|x) expresses the likelihood
of measurement outcome m given X = x. We will come back to these objects later, but let us
now jump a little bit ahead of ourselves and illustrate how the stabilization discussed above
plays out here.

In the Bayesian scheme the ill-posedness of the model is stabilized (mainly) by our a priori
information regarding X. Suppose that E is random vector in Rd with normally distributed
independent components. Similarly, let us assume that X has normally independent compo-
nents but with variance 1

α . It turns out that the respective probability densities are of the
form

πX(x) ' exp(−α ‖x‖22) and πE(e) ' exp(−‖e‖22).

Above and throughout these notes, the notation f ' g means that functions f and g coincide
up to a constant, i.e., there is some c > 0 such that f = cg. Now since πlike(m|x) =



πE(m−Ax), considering the posterior density in (6) as a function of x we have that

πpost(x | m) ' exp

(
−α

2
‖x‖22 −

1

2
‖Ax−m‖22

)
.

In consequence, the most probable solution with respect to the posterior (maximizing πpost(·|m))
is actually the minimizer of problem (2). Although this is a very rudimentary example, it
gives intuition how well-designed prior can affect the problem so that the posterior gives
high probability to stable solution candidates. Similarly, a well-designed prior can overcome
existence or uniqueness issues if present.

Later on, we aim to quantify and understand abstract effects like stability in a broader
sense - also for problems where the unknown is function valued, i.e., the realizations of random
variable X belong to some infinite-dimensional space. The computational part of this course
concerns the following question: how to extract information of the possibly high-dimensional
probability distribution πpost once it is solved. Also, the practical effects related to different
prior and noise models are considered there. The computational part of this course has
independent lecture notes/material.

2 A brief dive into probability theory

2.1 Preliminaries

As discussed above, our task is to understand probability of X being something given mea-
surement data M . From basic probability theory we know that

P(X ∈ E |M ∈ F ) =
P(X ∈ E,M ∈ F )

P(M ∈ F )
,

where E and F are some measurable sets. However, we would like to condition the probability
of X ∈ E with respect to a single realization of M . If M has a nice probability density, it is
easy to realize that probability of single value vanishes, i.e. P(M = m) = 0. Hence we need
to do a little work-out in the modern probability theory.

A triplet (Ω,F ,P) is called probability space, if

(1) Ω 6= ∅ is a set,

(2) F is a σ-algebra, i.e.

(a) Ω ∈ F ,

(b) If E ∈ F , then Ω \ E ∈ F and

(c) If Ej ∈ F , j ∈ N, then
⋃∞
j=1Ej ∈ F .

(3) P is a probability measure P : F → [0, 1] that satisfies

(a) P(Ω) = 1 and

(b) If measurable sets Ej ∈ F , j ∈ N, are disjoint (i.e. Ej ∩ Ek = ∅ if j 6= k), then

P

 ∞⋃
j=1

Ej

 =

∞∑
j=1

P(Ej).



The property 3b) of measure P is called σ-additivity. A (general) measure is called σ-finite if
Ω is the countable union of measurable sets with finite measure. Consider Lebesgue measure
on Rn as an example.

For a while, we consider random variable in Euclidian spaces equipped with the standard
Borel σ-algebra B(Rn). Recall that a Borel σ-algebra is the smallest σ-algebra containing the
open sets.

A random variable X is a measurable mapping

X : (Ω,F)→ (Rn,B(Rn)),

i.e., X−1(E) ∈ F whenever E ∈ B(Rn). Now X induces a probability measure on (Rn,B(Rn))
by

µ(E) := P(X−1(E)) = probability that X ∈ E.

The measure µ is called the probability distribution of X. We will often use notation X ∼ µ
to underline this.

Suppose µ and ν are two measures on the same measure space. Then µ is absolutely
continuous with respect to ν, if ν(E) = 0 implies µ(E) = 0. In such a case, we write µ� ν.
Measures µ and ν are equivalent if µ � ν and ν � µ. If µ and ν are supported on disjoint
sets, they are called mutually singular.

Theorem 1. Let µ and ν be two measures on the same measure space (Ω,F). If µ� ν and
ν is σ-finite then there exists f ∈ L1(Ω,F , ν) such that

µ(E) =

∫
E
f(x)dν(x)

for all E ∈ F .

Theorem 1 is called Radon–Nikodym theorem and the function f is known as the Radon–
Nikodym derivative of µ with respect to ν. In the following, we write

dµ

dν
(x) = f(x) ∈ L1(ν)

The proof of Theorem 1 is omitted (will add reference later).

Example 2.1. Suppose µ is a probability measure on (R,B(Rn)) and µ� Ln, where Ln is a
Lebesgue measure. By Theorem 1 there exists π ∈ L1(Rn) such that

µ(E) =

∫
E
π(x)dx

for any E ∈ B(R). The function π is called probability density is X.

Let us also define the joint distribution of random variables X and Y by

µX,Y (E × F ) = P(X−1(E) ∩ Y −1(F ))

for any measurable sets E and F (the range of X and Y can differ and thus E and F can
be subsets of different spaces). Suppose Y : Ω → Rn. The marginal distribution of X is
(similarly for Y ) is obtained by

µX(E) = µX,Y (E × Rn).



Notice that the marginal distribution of M in (6) appears frequently throughout these notes.
The random variables X and Y called independent if

µX,Y (E × F ) = µX(E)µY (F )

for any measurable sets E and F . It is one of the fundamental assumptions of Bayesian
inference that X and M in (5) are independent.

2.2 Conditional expectation and probability

In probability theory, σ-algebras represent information. One way to think about it is that
’knowing a σ-algebra G’ means knowing for each event E ∈ G whether E happened or not.
Hence, F represents all the information about the experiment in (Ω,F ,P) while sub-σ-algebra
G ⊂ F represents partial information.

A common way for σ-algebras to arise is to have them generated by random variables.
For examples, if X : Ω → R then σ(X) denotes the smallest σ-algebra containing preimages
of measurerable sets, i.e., sets X−1(E) where E ∈ B(R). Knowing the actual value of X
corresponds to knowing whether X ∈ E happened for each E ∈ B(R). However, many
sample points might produce the same realization X(ω). In this sense σ(X) provides only
partial information.

Suppose that G ⊂ F is a sub-σ-algebra. Notice carefully that measurability with respect
to G is a stronger requirement than measurability with respect to F since there are fewer
choices for the preimages of X.

Definition 2.2. Any random variable Y ∈ L1(Ω,G,P;Rn) is called the conditional expectation
of X ∈ L1(Ω,F ,P;Rn) with respect to G if∫

G
X(ω)dP(ω) =

∫
G
Y (ω)dP(ω) (7)

for all G ∈ G. We write E(X|G) := Y .

Proof. To be included.

Example 2.3. Let E ⊂ Ω such that 0 < P(E) < 1 and G = {∅, E,Ω \ E,Ω}. Then it holds
that

E(X|G)(ω) =
E(X1E)

P(E)
1E(ω) +

E(X1Ω\E)

P(Ω \ E)
1Ω\E(ω).

To convince us that this is indeed the case, we have to check whether the condition (7) holds
for each set in G. For example, we have∫

E
E(X|G)(ω)dP(ω) =

E(X1E)

P(E)

∫
E

1E(ω)dP(ω) = E(X1E) =

∫
E
X(ω)dP(ω).

Similarly, one can check the case for Ω \ E.

It also possible to consider conditional expectations of type E(φ(X)|F). This leads us to
conditional probability. Namely, conditional probability of an event {ω | X(ω) ∈ E} with
respect to G is defined by

Q(E,ω) = E(1E(X)|G).



Let us now study the mapping Q : G ×Ω→ [0, 1]. In our search for conditioning with respect
to a single realization (see beginning of Section 2.1) it would be crucial to know that Q(·, ω)
defines a probability measure on G for all (or at least almost all) ω ∈ Ω. Recall that by
definition ∫

G
Q(E,ω)dP(ω) =

∫
G

1E(X)dP(ω) = P(G ∩ {X ∈ E})

for all G ∈ G. We find out that Q(E, ·) is defined up to P-almost everywhere. However, since
there may be uncountably many sets in G, it is not trivial that we find a suitable version of
Q.

Definition 2.4. A family of probability distributions (µ(·, ω))ω∈Ω on (Rn,B(Rn)) is called a
regular conditional distribution of X given G ⊂ F if for each E ∈ B(Rn) we have

µ(E, ·) = E(1E(X) | G) almost surely.

When (Ω,F) is identified with (Rn,B(Rn)) and X(ω) = ω, (µ(·, ω))ω∈Rn is called a regular
conditional probability on F with respect to G.

A classical result in probability theory is the following.

Theorem 2. Let X : (Ω,F) → (Rn,B(Rn)) be a random variable and G ⊂ F a σ-algebra.
Then there exists a regular conditional distribution (µ(·, ω))ω∈Ω for X with respect to G.

We omit the proof (will add a reference!). In fact, the space Rn plays here no important
role. Instead, Theorem 2 can be generalized to e.g. complete separable metric spaces.

The rigorous meaning of µ(E, x) for x ∈ Rn is important for us. The idea is now to use
the regular conditional probability measure

µpost(E,M(ω)) = E(1E(X)|σ(M))(ω), (8)

where σ(M) ⊂ F is the σ-algebra generated by M and identify this object with µpost(E,m).

3 Playing with the Bayes formula

3.1 What is the Bayes formula?

Bayesian statistics usually begins by the notion that the joint distribution of (X,M) is given
and the posterior measure is a regular conditional distribution. Notice that, in general,
measurement model like (6) may not be available but the necessary information (like likelihood
distribution) is given via other means. In any case, important factor is that the marginal
distribution of (X,M) with respect to X is assumed to be our prior distribution. Further,
according to the Bayesian ’philosophy’, the prior should be independent of the measurement
setup.

Interesting phenomena would appear if we would allow the (rather natural) possibility
of the unknown X being generated by some different distribution than the prior. After all,
prior only models our beliefs and the partial information we have. However, in the context of
inverse problems we could easily end up in a situation where the posterior is not well-defined
(we couldn’t talk about it at all) and hence during these notes we keep the purely Bayesian
setup where X is generated by the prior.



Now, let us assume that in problem (6) our prior satisfies X ∼ µX . Due to Theorem 2
and identification of type (8) we are now able to talk about regular conditional probabili-
ties µlike(·|x) and µpost(·|m) with respect to a single realization. We are ready to state the
fundamental identity of Bayesian statistics, namely, the Bayes theorem.

Theorem 3 (Bayes). Suppose X : Ω → Rn and M : Ω → Rd satisfy equation (5). Assume
µlike(·|x)� ν for µX-almost every x ∈ Rn, where ν is a σ-finite measure. Moreover, we write

Γlike(·|x) :=
dµlike
dν

(·|x) ∈ L1(Rd, ν).

Then we have µpost(·|m)� µX for µM -almost every m ∈ Rd and

dµpost
dµX

(x|m) =
1

Z(m)
Γlike(m|x),

where Z(m) =
∫
Rn Γlike(m|x)dµX(x).

Proof. Our first concern is what is the probability of Z(m) = 0 or Z(m) =∞. Let us denote
these events by

E0 = {m|Z(m) = 0} and E∞ = {m|Z(m) =∞}.

We know that the marginal distribution of M satisfies

µM (E) =

∫
E

∫ ∫
Rn

Γlike(m|x)dµX(x)dν(m) =

∫
E
Z(m)dν(m).

It directly follows that µM (E0) = 0. Moreover, suppose ν(E∞) > 0. Then we have

µM (E∞) =

∫
E∞

∞dν(x) =∞,

which yields a contradiction since µM is a probability measure. Moreover, since µM � ν, it
must hold that also µM (E∞) = 0.

Next, the regularity of the posterior measure guarantees that we can write

P(X ∈ E,M ∈ F ) =

∫
F
µpost(E|m)dµM (m)

=

∫
F
µpost(E|m)

(∫
Rn

Γlike(m|x)dµX(x)

)
dν(m).

for any measurable sets E ∈ Rn and F ∈ Rd. Similarly, by writing the joint probability via
the regular likelihood yields

P(X ∈ E,M ∈ F ) =

∫
E

∫
F

Γlike(m|x)dν(m)dµX(x)

=

∫
F

∫
E

Γlike(m|x)dµX(x)dν(m),

where we have applied the Fubini theorem. Since E and F are arbitrary, we obtain

µpost(E|m) =

∫
E Γlike(m|x)dµX(x)∫
Rn Γlike(m|x)dµX(x)

and we are done.



Now suppose we take ν = Ld and µlike(·|x) � Ld, where Ld is the Lebesgue measure on
Rd and denote

πlike(m|x) :=
dµlike
dLd

(m|x).

Moreover, assume µX � Ln and

πX(x) :=
dµX
dLn

(x).

Then we have

µpost(E|m) =
1

Z(m)

∫
E
πlike(m|x)dµX(x)

=
1

Z(m)

∫
E
πlike(m|x)πX(x)dLn(x).

Now we see that µpost(·|m)� Ln and

πpost(x|m) =
dµpost
dLn

(x|m)

=
πlike(x|m)πX(x)

Z(m)

Since we have ∫
F
πM (m)dLd(m) = P(M ∈ F )

= P(X ∈ Rn,M ∈ F )

=

∫
Rn
µlike(F |x)dµX(x)

=

∫
F

∫
Rn
πlike(m|x)dµX(x)dLd(m)

=

∫
F
Z(m)d(m),

it follows that Z(m) = πM (m) for µM -almost every m ∈ Rd.

Corollary 3.1. Suppose all probability distributions related to problem (5) have well-defined
probability densities. Then the density function representation of the Bayes formula

πpost(x | m) =
πlike(m | x)πX(x)

πM (m)
, (9)

holds, where πpost, πlike and πX represent the posterior, likelihood and prior density, respec-
tively. Moreover, πM is the marginal distribution of the measurement M .

3.2 Example: Gaussian posterior

Let us next move to studying how the posterior density looks like in the canonical example
when the prior and likelihood have Gaussian statistics. Before proceeding, we record what is
a Gaussian random variable on Rn.



Definition 3.2. Let x0 ∈ Rn and C ∈ Rn×n be a symmetric positive definite matrix. A
Gaussian n-variate random variable X with mean x0 and covariance C is a random variable
with the probability density

πX(x) =
1√

(2π)n detC
exp

(
−1

2
(x− x0)>C−1(x− x0)

)
.

We denote the Gaussian distribution by X ∼ N (x0, C0).

Let us recall that covariance matrix of (any) random variable X is defined by

C = E(X − EX)(X − EX)>.

A Gaussian distribution is completely characterized by its mean and covariance.

Notice that the expression (x− x0)>C−1(x− x0) can also be written in form
∥∥C−1/2x

∥∥2

2

since due to our assumptions on C the inverse square root C−1/2 is well-defined. Sometimes,
when the posteriori distribution is of the form const ·exp(−F (x)), one can try to rewrite F as
a sum of a quadratic form and constant term in order to show that the posterior is Gaussian
(and to solve what is mean and covariance). This method is called completing the square and
it is what we essentially do in the following.

Since research on inverse problems most often is based on some model equation (5), we
have a connection between the likelihood and noise distributions.

Remark 3.3 (Likelihood). Suppose E ∼ µE � Ld and πnoise(e) = dµE
dLd (e). The regular

conditional probability satisfies

P(M ∈ E|X = x) = P(Ax+ E ∈ E) = P(E ∈ {e−Ax | e ∈ E}).

Therefore, it must hold that

πlike(m|x) = πnoise(m−Ax).

In order to analyse the Gaussian posterior further, we need some machinery from linear
algebra.

Definition 3.4. Let

C =

(
C11 C12

C21 C22

)
be a positive definite symmetric matrix. We define the Schur complements C̃jj of Cjj, j = 1, 2,
by

C̃22 := C11 − C12C
−1
22 C21 and

C̃11 := C22 − C21C
−1
11 C12.

Lemma 3.5. The Schur complements C̃jj are invertible and

C−1 =

(
C̃−1

22 −C̃−1
22 C12C

−1
22

−C̃−1
11 C21C

−1
11 C̃−1

11

)
Proof. Left for exercise.



For the following, let X ∼ N (x0, C0) and E ∼ N (0,Γ). Recall that X and E are assumed
to be independent. Next, consider the distribution of the measurement M . The equality (5)
implies that we have m0 := EM = Ax0 and

E(M −m0)(M −m0)> = E(A(X − x0) + E)(A(X − x0) + E)> = AC0A
> + Γ.

Moreover, we have

E(X − x0)(M −m0)> = E(X − x0)(A(X − x0) + E)> = C0A
>

The joint distribution of X and M then has a covariance

Cov

(
X
M

)
= E

((
X − x0

M −m0

)(
X − x0

M −m0

)>)
=

(
C0 C0A

>

AC0 AC0A
> + Γ

)
.

Therefore, it follows that

π(x,m) ' exp

{
−1

2

(
X − x0

M −m0

)(
C0 C0A

>

AC0 AC0A
> + Γ

)(
X − x0

M −m0

)>}

In order to ease our notations, let Cij , i, j = 1, 2, denote the components of Cov

(
X
M

)
. In

addition, we make a simplification of assuming x0 = 0 (and thus also m0 = 0). This can be
considered as a translation of the coordinates, and the equations below can be adjusted for
general case simply by replacing x with x− x0 and m with m−m0.

The crucial idea now is that we are interested in the posterior distribution only through
behaviour of x whereas m plays the role of constant for us. Therefore, we have by the Bayes
formula that

πpost(x|m) ' π(x,m).

In consequence, the joint density of the form

π(x,m) ' exp

(
−1

2
(x>C̃−1

22 x− 2x>C̃−1
22 C12C

−1
22 m+m>C̃−1

11 m)

)
' exp

(
−1

2
(x− C12C

−1
22 m)>C̃−1

22 (x− C12C
−1
22 m) + const

)
Now we obtain the mean and covariance of the posterior µpost(·|m) ∼ N (x̄, Cpost) as

Cpost = C̃22 = C0 − C0A
>(AC0A

> + Γ)−1AC0 (10)

and
xpost = C12C

−1
22 m = C0A

>(AC0A
> + Γ)−1m.

Notice carefully that the covariance Cpost is independent of the mean x0 (also mean of the
noise if that would be non-zero). Luckily, we have a more compact expression for these
objects.



Theorem 4. Let X ∼ N (x0, C0) and E ∼ N (0,Γ), and assume that equation (5) holds. Then
we have

πpost(x|m) ' exp

(
−1

2
(x− x̄)>C−1

post(x− x̄)

)
,

where
Cpost = (A>Γ−1A+ C−1

0 )−1 (11)

and
xpost = Cpost(A

>Γ−1m+ C−1
0 x0). (12)

Proof. To show that the two expressions coincide we simply multiply (10) with the inverse of
(10) and hope to obtain an identity matrix:

(C0 − C0A
>(AC0A

> + Γ)−1AC0)(A>Γ−1A+ C−1
0 )

= (I − C0A
>(AC0A

> + Γ)−1A)(I + C0A
>Γ−1A)

= I + C0A
>Γ−1A− C0A

>(AC0A
> + Γ)−1A(I + C0A

>Γ−1A)

= I + C0A
>Γ−1A− C0A

>Γ−1A = I,

where on the third line we used the identity A(I+C0A
>Γ−1A) = (Γ+AC0A

>)Γ−1A. Similar
deduction can be made if the order of matrices is reversed (i.e. AB = BA = I).

For the mean value notice that we can write

Γ−1 − (Γ +AC0A
>)−1AC0A

>Γ−1 = (Γ +AC0A
>)−1. (13)

From equation (12) we obtain

xpost = Cpost((C
−1
post −A>Γ−1A)x0 +A>Γ−1m)

= x0 + CpostA
>Γ−1(m−Ax0).

A combination of (10) and (13) yields

CpostA
>Γ−1 = C0A

>Γ−1 − C0A
>(Γ +AC0A

>)−1AC0A
>Γ−1

= C0A
>(Γ +AC0A

>)−1

and we are done.

4 Posterior contraction with Gaussian distributions

Recall from introduction that the reconstruction error in inverse problems is a balance between
two factors: one generated by the modelling error of replacing (1) with a stable one and second
generated by the noise. In consequence, an optimal solution strategy (choosing α) is based on
an accurate estimate of the noise level. However, as we are talking about ill-posed problems,
it is important to analyse how the solution strategy works as the noise level is reduced. Does
the regularized solution converge to the ’true’ solution?

In Bayesian inversion the analysis of vanishing measurement noise is often called posterior
contraction or consistency related to individual estimators. In the following we consider
this problem for over- and underdetermined systems. The take-away message is that in
overdetermined systems, the prior plays no role in the limit. However, practical inverse
problems are usually underdetermined. We will notice that in this case a well-designed prior
distribution is essential in the limit.



Example 4.1 (Overdetermined system). Let us consider a measurement

M = gX + E

where g ∈ Rd \ {0} for d ≥ 2 and the unknown X is one-dimensional. Suppose that X ∼
N (0, 1) and E ∼ N (0, σ2I). Then by Theorem 4 we have

πpost(x|m) ' exp

(
− 1

2σ2
|m− gX|22 −

1

2
x2

)
.

and moreover

xpost =
g>m

σ2 + |g|2
and σ2

post =
σ2

σ2 + |g|2
.

In consequence, in the limit one obtains

x+
post = lim

σ→0
xpost(σ) =

g>m

|g|2
= arg min

x∈R
|m− gx|2

and (σ2
post)

+ = limσ→0 σ
2
post = 0. We notice that for overdetermined problems the prior plays

no role in the limit of zero measurement noise.

Example 4.2 (Underdetermined system). Suppose d = 1, n ≥ 2 and

M = g>x+ E ,

where g ∈ Rn \ {0} and both the noise E and the measurement M are one-dimensional. Let
us assume E ∼ N (0, σ2) and X ∼ N (0, C0). By Theorem 4 we get

πpost(x|m) ' exp

(
− 1

2σ2
|m− g>x|2 − 1

2
x>C−1

0 x

)
and

xpost =
m

σ2 + g>C0g
· C0g

together with

Cpost = C0 −
(C0g)(C0g)>

σ2 + g>C0g
.

Again, going to the limit of zero measurement noise yields

x+
post = lim

σ→0
xpost(σ) =

m

g>C0g
C0g

and

C+
post = lim

σ→0
Cpost(σ) = C0 −

(C0g)(C0g)>

g>C0g
.

How to interpret this? On one hand, since C+
postg = 0 and (x+

post)
>g = m, we see that the

posterior predicts the ’true’ solution in the subspace G spanned by the vector g. On the other
hand, we have no information from the complement subspace, and consequently the posterior
is fully described by the prior in G⊥.



Lemma 4.3. Let µn ∼ N (xn, Cn) and µ ∼ N (x,C) on Rn. Suppose xn → x and Cn → C in
the usual two-norm as n→∞. It follows that the measures converge weakly, i.e., µn ⇀ µ.

Proof. This follows directly from Lemma B.3. Also, using the Definition B.1 we could prove
the claim by using the Lebesgue dominated convergence.

Theorem 5. Let X ∼ N (x0, C0) and E ∼ N (0,Γ(σ)). If Null(A) = {0} and Γ(σ) = σ2Γ0,
γ > 0, it follows that

µpost(·|m) ⇀ δx+post

when σ → 0 and where

x+
post = arg min

x

∥∥∥Γ
−1/2
0 (Ax−m)

∥∥∥2
.

Proof. From equations (12) and (11) we see that

xpost = (A>Γ−1
0 A+ σ2C−1

0 )−1(AΓ−1
0 m+ σ2C−1

0 x0) and (14)

Cpost = σ2(A>Γ−1
0 A+ σ2C−1

0 )−1. (15)

Since A has a trivial null space, there exists α > 0 such that

〈ξ, A>Γ−1
0 Aξ〉 = |Γ−1/2

0 Aξ|2 ≥ α|ξ|2

for all ξ ∈ Rn. Therefore, the matrix A>Γ−1
0 A is invertible. Now we can take σ to zero in

(14) and get
x+
post = lim

σ→0
xpost(σ) = (A>Γ−1

0 A)−1AΓ−1
0 m

and C+
post → 0. By Lemma 4.3 we have the weak convergence.

Due to the trivial null space of A, the minimizer of

1

2

∥∥∥Γ
−1/2
0 (Ax−m)

∥∥∥2

is unique and satisfies
A>Γ−1

0 Ax+
post = A>Γ−1

0 m.

This yields the claim.

In the underdetermined setting A ∈ Rd×n, where d < n. Below, we list some notations
that help us to formulate and prove the contraction result efficiently. Assume rank(A) = d so
that we can write

A = (A0 0)Q>,

where Q ∈ Rn×n is orthogonal (Q>Q = QQ> = I), A0 ∈ Rd×d is invertible and 0 ∈ Rd×(n−d)

a zero matrix. Also, denote by L0 = Γ−1
0 the precision matrix and

Q>L0Q =

(
L11 L12

L>12 L22

)
,

where L11 ∈ Rd×d, L12 ∈ Rd×(n−d) and L22 ∈ R(n−d)×(n−d). Both L11 and L22 inherit the
symmetricity and positive definiteness of L0. Also, we write Q = (Q1Q2) with Q1 ∈ Rn×d
and Q2 ∈ Rn×(n−d).



Next we define vectors z ∈ Rd and z′ ∈ Rn−d, which we use to define the limiting posterior
mean. First, we set z to be the unique solution of

A0z = m. (16)

We notice that if Ax = m for some x ∈ Rn, then z = Q>1 x. On the other hand, Q>2 x is
not determined by the identity of x. Hence, z represents the information provided by the
measurement. Similarly, Q>2 x is not determined by the measurement.

Let w ∈ Rd and w′ ∈ Rn−d be defined via

L0x0 = Q

(
w
w′

)
and set

z′ = −L−1
22 L

>
12z + L−1

22 w
′ ∈ Rn−d. (17)

Theorem 6. Let X ∼ N (x0, C0) and E ∼ N (0,Γ(σ)). If Γ(σ) = σ2Γ0, γ > 0, and (z, z′) is
defined by (16) and (17), it follows that

µpost(·|m) ⇀ N (x+
post, C

+
post),

where x+
post = Q

(
z
z′

)
and C+

post = Q2L
−1
22 Q

>
2 .

Proof. We have

A>Γ−1
0 A = Q

(
A>0 Γ−1

0 A0 0
0 0

)
Q>

and consequently

C−1
post = Q

(
1
σ2A

>Γ−1
0 A+ L11 L12

L>12 L22

)
Q>.

By utilizing Schur complements we can prove

Cpost = Q

(
σ2(A>0 Γ−1

0 A0)−1 0

−σ2L−1
22 L

>
12(A>0 Γ−1

0 A0)−1 L−1
22

)
Q> + ∆, (18)

where ∆ =

(
∆11 ∆12

∆21 ∆22

)
satisfies

1

σ2
(|∆11|+ |∆21|)→ 0

as σ → 0 and |∆12|+ |∆22| ≤ Cσ2 for some fixed constant C > 0 (see Exercise 3.3). Now we
obtain

C+
post = lim

σ→0
Cpost(σ) = Q

(
0 0

0 L−1
22

)
Q>

as required.
Let us then consider the posterior mean. We see that

xpost = Cpost

(
1

σ2
Q

(
A>0 Γ−1

0

0

)
m+ C−1

0 x0

)



and by the definition of w and w′ we deduce that

xpost = CpostQ

(
1
σ2A

>
0 Γ−1

0 m+ w
w′

)
.

By equation (18) we have

lim
σ→0

xpost(σ) = Q

(
z

−L−1
22 L

>
12z + L−1

22 w
′

)
= Q

(
z
z′

)
,

which proves the claim.

5 Well-posedness of Bayesian inversion

By well-posedness we refer to the continuity of the method of obtaining the posterior prob-
ability distribution with respect to different perturbations in the parameters. In practise,
this could mean for example the following: if we have two measurements close to each other,
does this mean the corresponding posterior distributions are close in some metric (see Section
B.2)? Recall that ill-posed problems generally are discontinuous in this regard, i.e. with-
out regularization small difference in measurements can induce arbitrarily large difference in
reconstructions. Does the Bayesian approach then regularize the problem? The answer is
yes under certain assumptions on the modelling. In the following we also consider how the
modelling error in prior is propagated to the posterior.

In the following we frequently write

f . g (19)

for two functions f and g, if there is a constant c > 0 such that

f ≤ cg

almost everywhere.

5.1 Distance of posteriors in Rn

Let us first consider the distance between Gaussian distributions to set the scene.

Example 5.1. Let µ1 ∼ N (x1, σ
2
1) and µ2 ∼ N (x2, σ

2
2) be two Gaussian probability measures

on (R,B(R)). As the reference measure ν in the Hellinger distance we use the Lebesgue
measure. We have

dHell(µ1, µ2)2 = 1− 1√
2πσ1σ2

∫
R

exp(−Q(x))dx,

where

Q(x) =
1

4σ2
1

(x− x1)2 +
1

4σ2
2

(x− x2)2.

Define γ by
1

2γ2
=

1

4σ2
1

+
1

4σ2
2

.



A change of variable y = x− x1+x2
2 yields for r = x1−x2

2 that

Q(y) =
1

4σ2
1

(y − r)2 +
1

4σ2
2

(y + r)2

=
y2

2γ2
−
(

1

2σ2
1

− 1

2σ2
2

)
yr +

r2

2γ2

=
1

2γ2
(y − z

2
)2 − z2

8γ2
+

r2

2γ2
,

where z = γ2r
(

1
σ2
1
− 1

σ2
2

)
. Since

− z2

8γ2
+

r2

2γ2
=

(x1 − x2)2

4(σ2
1 + σ2

2)

we find that

dHell(µ1, µ2)2 = 1− 1√
2πσ1σ2

∫
R

exp

(
− 1

2γ2
(y − z

2
)2

)
dy · exp

(
− (x1 − x2)2

4(σ2
1 + σ2

2)

)
= 1− 1√

2πσ1σ2

√
2πγ2 exp

(
− (x1 − x2)2

4(σ2
1 + σ2

2)

)
= 1−

√
2σ1σ2

σ2
1 + σ2

2

exp

(
− (x1 − x2)2

4(σ2
1 + σ2

2)

)
.

This can be further approximated by

dHell(µ1, µ2)2 ≤ 1−

√
1− (σ1 − σ2)2

σ2
1 + σ2

2

(
1− (x1 − x2)2

4(σ2
1 + σ2

2)

)

≤ 1−

√
1− (σ1 − σ2)2

σ2
1 + σ2

2

+
(x1 − x2)2

4(σ2
1 + σ2

2)

≤ (σ1 − σ2)2

σ2
1 + σ2

2

+
(x1 − x2)2

4(σ2
1 + σ2

2)

. (σ1 − σ2)2 + (x1 − x2)2,

where the implicit constant of course depends on σ1 and σ2. This elegantly illustrates how the
study of the distance can be split into separation of standard deviations (or variances since
the difference is equivalent) and mean values. For notation . see (19).

Theorem 7. Let µ1 ∼ N (x1, C1) and µ2 ∼ N (x2, C2) be two probability measures on Rn.
Then we have

dHell(µ1, µ2)2 = 1− (detC1)1/4 (detC2)1/4(
det
(
C1+C2

2

))1/2 exp

(
−1

8
∆x>

(
C1 + C2

2

)−1

∆x

)
, (20)

where ∆x = x1 − x2.

Proof. Left for exercise.



Let us next consider what implications Theorem 7 has for the posterior under perturba-
tions of the measurement or prior.

Theorem 8. Suppose m1,m2 ∈ Rd are the measurements obtained for problem (5). It follows
that

dHell(µpost(·|m1), µpost(·|m2)) . ‖m1 −m2‖2

Proof. According to Theorem 4 we have

∆xpost = x1
post − x2

post = CpostA
>Γ−1(m1 −m2),

where the posterior covariance

Cpost = (A>Γ−1A+ C−1
0 )−1

is independent of measurements. We deduce that

∆x>postC
−1
post∆xpost = (m1 −m2)>Γ−1ACpostA

>Γ−1(m1 −m2)

=
∥∥∥C1/2

postA
>Γ−1(m1 −m2)

∥∥∥2

2

≤ c ‖m1 −m2‖22

for some constant c > 0 depending on the (bounded) norms of C
1/2
post, A

> and Γ−1. Our result
follows from

dHell(µpost(·|m1), µpost(·|m2)) ≤ 1− exp(−c ‖m1 −m2‖22) ≤ c̃ ‖m1 −m2‖22 , (21)

where c̃ > 0 is a constant. Above, we used the fact exp(−t) ≥ 1− t for t > 0.

Next we compare Bayesian inference on the problem (5) based on one measurement m ∈
Rd but two different prior distributions µ1 and µ2. We denote the corresponding posterior
distributions by µ1

post and µ2
post, respectively.

Lemma 5.2. Let us assume the prior distributions are Gaussian with only difference in mean
values, i.e. µ1 ∼ N (x1, C0) and µ2 ∼ N (x2, C0). We have then

dHell(µ
1
post, µ

2
post) . ‖x1 − x2‖2 .

Proof. The proof is similar to Theorem 8. We observe that

∆xpost = CpostC
−1
0 (x1 − x2)

and consequently
∆x>postC

−1
post∆xpost . ‖x1 − x2‖22 .

An inequality similar to (21) finishes the proof.

Lemma 5.3. Let us assume the prior distributions are Gaussian with only difference in
covariance, i.e. µ1 ∼ N (x0, C1) and µ2 ∼ N (x0, C2). We have then

dHell(µ
1
post, µ

2
post) . ‖C1 − C2‖2 .



Proof. Denote the posterior covariances by Cpost,1 and Cpost,2, respectively. Recall that

Cpost,j =
(
A>Γ−1A+ C−1

j

)−1

and consider first the expressions appearing in the exponent in (20). The difference between
posterior means is given by

∆xpost = (Cpost,1 − Cpost,2)A>Γ−1m+ (Cpost,1C
−1
1 − Cpost,2C−1

2 )x0 (22)

The following line of argument is rather technical (I should check if there’s an easier way!).
However, the two main points are that for invertible matrices T1 and T2 (of same size) we
have

T−1
1 − T−1

2 = T−1
1 (T2 − T1)T−1

2

and we are basically only interested in the difference C1 − C2. Norm of anything else is
constant (bigger than zero) to us. Hence, let us denote

B1 := Cpost,1 − Cpost,2 = Cpost,1(C−1
post,2 − C

−1
post,1)Cpost,2 = Cpost,1C

−1
2 (C1 − C2)C−1

1 Cpost,2

and consequently ‖B1‖2 . ‖C1 − C2‖. Similarly, let

B2 := Cpost,1C
−1
1 − Cpost,2C−1

2 = Cpost,1C
−1
1 (C2 − C1)A>Γ−1ACpost,2C

−1
2

which yields ‖B2‖2 . ‖C1 − C2‖. Consider writing out the term 2x>post(Cpost,1+Cpost,2)−1x>post
with notations B1 and B2. Direct bound obtained by factoring out norms of each involved
matrix yields∥∥∥∥∥∆x>post

(
Cpost,1 + Cpost,2

2

)−1

∆x>post

∥∥∥∥∥
.
∥∥∥B>1 ∥∥∥

2
‖B1‖2 +

∥∥∥B>1 ∥∥∥
2
‖B2‖2 +

∥∥∥B>2 ∥∥∥
2
‖B1‖2 +

∥∥∥B>2 ∥∥∥
2
‖B2‖2 . ‖C1 − C2‖22 . (23)

Now let us turn our attention to the determinants in (20). First notice the equality

(detCpost,1)1/4 (detCpost,2)1/4(
det
(
Cpost,1+Cpost,2

2

))1/2
=

(
det(C−1

post,1Cpost,2)
)1/4

(
det

(
I+C−1

post,1Cpost,2
2

))1/2
. (24)

Moreover, for positive definite matrix C̃ ∈ Rn×n we know that

exp(Tr(I− C̃−1)) ≤ det(C̃) ≤ exp(Tr(C̃ − I)).

The idea is now that we take C̃ = Cpost,1C
−1
post,2, which is rather close to identity. In fact,

the distance to identity is of order ‖C1 − C2‖2 as we will see next. Since C−1
post,1Cpost,2 is

symmetric and positive definite (particularly invertible), we have a lower bound to the right
hand side of (24) by(

exp
(

Tr(I− C−1
post,2Cpost,1)

))1/4

(
exp

(
Tr(

I+C−1
post,1Cpost,2

2 − I)

))1/2

= exp

(
−1

4
Tr(C−1

post,2Cpost,1 + C−1
post,1Cpost,2 − 2I)

)
≥ exp

(
b ‖C1 − C2‖22

)
(25)



for some constant b > 0, since C̃ + C̃−1 − 2I is positive definite (implying we can bound the
trace by n-times the norm). The bound is obtained by computing

C−1
post,2Cpost,1 − I = (A>Γ−1A+ C−1

2 )(A>Γ−1A+ C−1
1 )−1 − I

= (C−1
2 − C−1

1 )(A>Γ−1A+ C−1
1 )−1

(similarly to the other term) and consequently

C−1
post,2Cpost,1 + C−1

post,1Cpost,2 − 2I = (C−1
2 − C−1

1 )Cpost,1(C−1
2 − C−1

1 )Cpost,2.

What we get is∥∥∥C−1
post,2Cpost,1 + C−1

post,1Cpost,2 − 2I
∥∥∥

2
.
∥∥C−1

1 − C−1
2

∥∥2

2
. ‖C1 − C2‖22

and hence (25). Finally, putting together (23) and (25) we obtain

dHell(µ
1
post, µ

2
post)

2 ≤ 1− exp(c ‖C1 − C2‖22) ≤ c ‖C1 − C2‖22

for some constant c > 0.

Theorem 9. Suppose our two priors are µ1 ∼ N (x1, C1) and µ2 ∼ N (x2, C2). It follows that

dHell(µ
1
post, µ

2
post) . ‖x1 − x2‖2 + ‖C1 − C2‖2 .

Proof. Let us define an auxiliary prior µ3 ∼ N (x3, C3) and the corresponding posterior µ3
post.

By triangle inequality and Lemmas 5.2 and 5.3 we have

dHell(µ
1
post, µ

2
post) ≤ dHell(µ1

post, µ
3
post) + dHell(µ

3
post, µ

2
post) . ‖x1 − x2‖2 + ‖C1 − C2‖2 ,

A Crash course on probability in Banach spaces

TO BE CONTINUED.

B Convergence of probability measures

The results in this appendix are written for probability measures on a separable Banach space
(B,B(B)) with its Borel σ-algebra. However, the structure of the space is not essential and
so just take B = Rn if you will and keep in mind that B∗ = B = Rn in that case.

B.1 Weak convergence

Definition B.1. Let µn, n ∈ N and µ be probability measures on (B,B(B)). Then we say
that µn converges weakly to µ if for all f ∈ Cb(B,R) it holds that

lim
n→∞

∫
B
f(x)dµn(x) =

∫
B
f(x)dµ(x).

If this is the case, we write µn ⇀ µ.



Definition B.2. Let µ be a probability measure on (B,B(B)). The characteristic function
ψµ : B∗ → C is defined by

ψµ(x∗) :=

∫
B

exp(i〈x∗, x〉B∗×B)dµ(x).

Lemma B.3. Let µn, n ∈ N, be probability measures on (B,B(B)). If for all x∗ ∈ B∗ it
holds that

ψµn(x∗)→ exp

(
i〈x∗, x0〉B∗×B −

1

2
〈x∗, C0x

∗〉B∗×B
)
,

where x0 ∈ B and C0 : B∗ → B is symmetric positive-definite operator then

µn ⇀ N (x0, C0),

i.e., the measures converge to a Gaussian distribution with mean x0 ∈ B and covariance
C0 : B∗ → B.

B.2 Metrics on probability measures

Suppose µ1 and µ2 are probability measures and ν a σ-finite measure on (B,B(B)). In this
subsection we assume that ν satisfies µ1 � ν and µ2 � ν simultaneously. Such a measure
surely exists since one can take ν = 1

2(µ1 + µ2).

Definition B.4. Total variation distance between µ1 and µ2 is defined by

dTV (µ1, µ2) =
1

2

∫
B

∣∣∣∣dµ1

dν
− dµ2

dν

∣∣∣∣ dν.
In particular, if µ1 � µ2, we have

dTV (µ, µ′) =
1

2

∫
B

∣∣∣∣1− dµ1

dµ2

∣∣∣∣ dµ.
Definition B.5. The Hellinger distance between µ1 and µ2 is defined by

dHell(µ1, µ2) =

√√√√1

2

∫
B

(√
dµ1

dν
−
√
dµ2

dν

)2

dν.

Again, if it holds that µ1 � µ2, then

dHell(µ1, µ2) =

√√√√1

2

∫
B

(
1−

√
dµ1

dµ2

)2

dν =

√√√√1−
∫
B

√
dµ1

dµ2
dµ2.

Notice that the constant 1
2 guarantees that

0 ≤ dTV (µ1, µ2), dHell(µ1, µ2) ≤ 1.

Lemma B.6. We have

1√
2
dTV (µ1, µ2) ≤ dHell(µ1, µ2) ≤ dTV (µ1, µ2)

1
2 .



Proof. A lengthy calculation yields

dTV (µ1, µ2) =
1

2

∫
B

∣∣∣∣∣
√
dµ1

dν
−
√
dµ2

dν

∣∣∣∣∣
∣∣∣∣∣
√
dµ1

dν
+

√
dµ2

dν

∣∣∣∣∣ dν
≤

√√√√1

2

∫
B

(√
dµ1

dν
−
√
dµ2

dν

)2

dν

√√√√1

2

∫
B

(√
dµ1

dν
+

√
dµ2

dν

)2

dν

≤

√√√√1

2

∫
B

(√
dµ1

dν
−
√
dµ2

dν

)2

dν

√∫
B

(
dµ1

dν
+
dµ2

dν

)
dν

=

√√√√∫
B

(√
dµ1

dν
−
√
dµ2

dν

)2

dν

=
√

2dHell(µ1, µ2),

where we applied Cauchy–Schwarz inequality. The second inequality follows by using |
√
a−√

b| ≤
√
a+
√
b, since

dHell(µ1, µ2)2 =
1

2

∫
B

(
1−

√
dµ1

dµ2

)2

dν =

√√√√1−
∫
B

√
dµ1

dµ2
dµ2

≤ 1

2

∫
B

∣∣∣∣∣
√
dµ1

dν
−
√
dµ2

dν

∣∣∣∣∣
∣∣∣∣∣
√
dµ1

dν
+

√
dµ2

dν

∣∣∣∣∣ dν
= dTV (µ1, µ2).
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