
Bayesian inversion: theoretical perspective
Lecture notes, spring 2016 course

Tapio Helin

February 5, 2016

Contents

1 Short motivation 1

2 A brief dive into probability theory 4
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Conditional expectation and probability . . . . . . . . . . . . . . . . . . . . . . 6

3 Playing with the Bayes formula 7
3.1 What is the Bayes formula? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Example: Gaussian posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Short motivation

Consider an indirect physical measurement, which can be approximatively modelled by a
linear equation

m = Ax. (1)

Above, x,m ∈ Rn describe the unknown and the measurement, respectively, and matrix
A ∈ Rn×n models how these two quantity are related via physics. Among inverse problems
research community, we are in the business of solving x given the measurement data ideally
modelled by m. This task is made non-trivial by considering problems where the underlying
mathematical model (approximated by (1)) is ill-posed. The classical definition of a well-
posed problem by Hadamard states that (a) a solution must exist and that it is (b) unique.
Moreover, the (c) solution has to depend continuously on the data. An ill-posed problem
violates at least one of these conditions.

The violation of the stability condition (c) typically leads to numerical challenges in inverse
problems that for problem (1) appear as a high condition number of matrix A. Recall that
the condition number of A is defined by

cond(A) =
λmax
λmin

.

For example, let us assume that λmax = 1 and λmin = ε, where λmax and λmin correspond
the largest and smallest eigenvalue, respectively, and ε > 0 is very small. Any real-life
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measurement is contaminated by some noise. Hence, it is reasonable to assume that our
measurement is obtained as

mδ = Ax0 + δ,

where x0 describes the ’true’ value and δ describes the measurement noise. Notice that we
do not know δ exactly and in the best case scenario we might have some estimate concerning
its size/norm. Even if A is invertible, a naive reconstruction by

A−1mδ = x0 +A−1δ =: x0 + δ̃

easily leads to useless approximation since in the worst case the error

‖δ̃‖2 ≈
‖δ‖2
ε

can be arbitrarily large. This illustrates one key perspective of inverse problem theory: how
to stabilize the reconstruction process while maintaining acceptable accuracy.

The theory related to deterministic problems like (1) is called regularization theory and is
discussed in more detail in the usual Inverse problems course. One of the fundamental ideas
of regularization theory is to approximate the problem (1) by a stable one. In the classical
Tikhonov regularization (1) is replaced by a variational problem

min
x∈Rn

(∥∥∥Ax−mδ
∥∥∥2

2
+ α ‖x‖22

)
. (2)

The solution to (2) is given by

xδα = (A>A+ αI)−1A>mδ =: Rαm
δ,

where we notice that the reconstruction matrix has a modified eigenvalue structure. Namely,
we have

λmin(Rα) =
λmin

λ2
min + α

and hence the problem is stabilized. Moreover, we find that

Rαm
δ = x0 + (RαA− I)x0 +Rαδ

where the two error terms on the right hand side are approximately of size

‖(RαA− I)x0‖2 ≈
α

λ2
min + α

‖x0‖2 (3)

and

‖Rαδ‖2 ≈
λmin

λ2
min + α

‖δ‖2 . (4)

We immediately notice the effect that if α is increased, the first error term (3) increases
(becoming comparable to ‖x0‖2!). Meanwhile, if α decreases, the second error term explodes.
The optimal strategy is a balance between the two errors. As illustrated here: the more
accurate information you have related to the unknown x0, the noise δ and structure of the
problem (here: eigenvalue structure), the better choices you can make with your regularization
strategy.



The topic of this course, Bayesian inversion, rephrases the problem (1) as a question of
statistical inference: consider a problem

M = AX + E , (5)

where the quantities describing our measurement, unknown and noise are replaced by random
variables. Here, X : Ω → Rn and M, E : Ω → Rd, where Ω is our probability space.
Randomness in this framework describes our lack of knowledge related to their exact values.
The degree of our information is encoded into their probability distributions. The solution to
(5) is so-called posterior distribution, i.e., the conditional probability of X given measurement
M = mδ.

The randomness (or uncertainty) can appear due to several effects in a practical mea-
surement setting. It can appear via some statistical information which is available about the
unknown or the model. Randomness can also reflect the lack of information about correct
parameter values in the model. Ultimately, the noise in any practical measurement is always
random.

In practise, the posterior distribution is obtained via the Bayes formula which states, using
probability densities, that

πpost(x | m) =
πlike(m | x)πX(x)

πM (m)
, (6)

where πpost, πX and πM are the posterior, prior and marginal probability densities (we of
course need to assume they exist). The likelihood density πlike(m|x) expresses the likelihood
of measurement outcome m given X = x. We will come back to these objects later, but let us
now jump a little bit ahead of ourselves and illustrate how the stabilization discussed above
plays out here.

In the Bayesian scheme the ill-posedness of the model is stabilized (mainly) by our a priori
information regarding X. Suppose that E is random vector in Rd with normally distributed
independent components. Similarly, let us assume that X has normally independent compo-
nents but with variance 1

α . It turns out that the respective probability densities are of the
form

πX(x) ' exp(−α ‖x‖22) and πE(e) ' exp(−‖e‖22).

Above and throughout these notes, the notation f ' g means that functions f and g coincide
up to a constant, i.e., there is some c > 0 such that f = cg. Now since πlike(m|x) =
πE(m−Ax), considering the posterior density in (6) as a function of x we have that

πpost(x | m) ' exp

(
−α

2
‖x‖22 −

1

2
‖Ax−m‖22

)
.

In consequence, the most probable solution with respect to the posterior (maximizing πpost(·|m))
is actually the minimizer of problem (2). Although this is a very rudimentary example, it
gives intuition how well-designed prior can affect the problem so that the posterior gives
high probability to stable solution candidates. Similarly, a well-designed prior can overcome
existence or uniqueness issues if present.

Later on, we aim to quantify and understand abstract effects like stability in a broader
sense - also for problems where the unknown is function valued, i.e., the realizations of random
variable X belong to some infinite-dimensional space. The computational part of this course



concerns the following question: how to extract information of the possibly high-dimensional
probability distribution πpost once it is solved. Also, the practical effects related to different
prior and noise models are considered there. The computational part of this course has
independent lecture notes/material.

2 A brief dive into probability theory

2.1 Preliminaries

As discussed above, our task is to understand probability of X being something given mea-
surement data M . From basic probability theory we know that

P(X ∈ E |M ∈ F ) =
P(X ∈ E,M ∈ F )

P(M ∈ F )
,

where E and F are some measurable sets. However, we would like to condition the probability
of X ∈ E with respect to a single realization of M . If M has a nice probability density, it is
easy to realize that probability of single value vanishes, i.e. P(M = m) = 0. Hence we need
to do a little work-out in the modern probability theory.

A triplet (Ω,F ,P) is called probability space, if

(1) Ω 6= ∅ is a set,

(2) F is a σ-algebra, i.e.

(a) Ω ∈ F ,

(b) If E ∈ F , then Ω \ E ∈ F and

(c) If Ej ∈ F , j ∈ N, then
⋃∞
j=1Ej ∈ F .

(3) P is a probability measure P : F → [0, 1] that satisfies

(a) P(Ω) = 1 and

(b) If measurable sets Ej ∈ F , j ∈ N, are disjoint (i.e. Ej ∩ Ek = ∅ if j 6= k), then

P

 ∞⋃
j=1

Ej

 =
∞∑
j=1

P(Ej).

The property 3b) of measure P is called σ-additivity. A (general) measure is called σ-finite if
Ω is the countable union of measurable sets with finite measure. Consider Lebesgue measure
on Rn as an example.

For a while, we consider random variable in Euclidian spaces equipped with the standard
Borel σ-algebra B(Rn). Recall that a Borel σ-algebra is the smallest σ-algebra containing the
open sets.

A random variable X is a measurable mapping

X : (Ω,F)→ (Rn,B(Rn)),

i.e., X−1(E) ∈ F whenever E ∈ B(Rn). Now X induces a probability measure on (Rn,B(Rn))
by

µ(E) := P(X−1(E)) = probability that X ∈ E.



The measure µ is called the probability distribution of X. We will often use notation X ∼ µ
to underline this.

Suppose µ and ν are two measures on the same measure space. Then µ is absolutely
continuous with respect to ν, if ν(E) = 0 implies µ(E) = 0. In such a case, we write µ� ν.
Measures µ and ν are equivalent if µ � ν and ν � µ. If µ and ν are supported on disjoint
sets, they are called mutually singular.

Theorem 1. Let µ and ν be two measures on the same measure space (Ω,F). If µ� ν and
ν is σ-finite then there exists f ∈ L1(Ω,F , ν) such that

µ(E) =

∫
E
f(x)dν(x)

for all E ∈ F .

Theorem 1 is called Radon–Nikodym theorem and the function f is known as the Radon–
Nikodym derivative of µ with respect to ν. In the following, we write

dµ

dν
(x) = f(x) ∈ L1(ν)

The proof of Theorem 1 is omitted (will add reference later).

Example 2.1. Suppose µ is a probability measure on (R,B(Rn)) and µ� Ln, where Ln is a
Lebesgue measure. By Theorem 1 there exists π ∈ L1(Rn) such that

µ(E) =

∫
E
π(x)dx

for any E ∈ B(R). The function π is called probability density is X.

Let us also define the joint distribution of random variables X and Y by

µX,Y (E × F ) = P(X−1(E) ∩ Y −1(F ))

for any measurable sets E and F (the range of X and Y can differ and thus E and F can
be subsets of different spaces). Suppose Y : Ω → Rn. The marginal distribution of X is
(similarly for Y ) is obtained by

µX(E) = µX,Y (E × Rn).

Notice that the marginal distribution of M in (6) appears frequently throughout these notes.
The random variables X and Y called independent if

µX,Y (E × F ) = µX(E)µY (F )

for any measurable sets E and F . It is one of the fundamental assumptions of Bayesian
inference that X and M in (5) are independent.



2.2 Conditional expectation and probability

In probability theory, σ-algebras represent information. One way to think about it is that
’knowing a σ-algebra G’ means knowing for each event E ∈ G whether E happened or not.
Hence, F represents all the information about the experiment in (Ω,F ,P) while sub-σ-algebra
G ⊂ F represents partial information.

A common way for σ-algebras to arise is to have them generated by random variables.
For examples, if X : Ω → R then σ(X) denotes the smallest σ-algebra containing preimages
of measurerable sets, i.e., sets X−1(E) where E ∈ B(R). Knowing the actual value of X
corresponds to knowing whether X ∈ E happened for each E ∈ B(R). However, many
sample points might produce the same realization X(ω). In this sense σ(X) provides only
partial information.

Suppose that G ⊂ F is a sub-σ-algebra. Notice carefully that measurability with respect
to G is a stronger requirement than measurability with respect to F since there are fewer
choices for the preimages of X.

Definition 2.2. Any random variable Y ∈ L1(Ω,G,P;Rn) is called the conditional expectation
of X ∈ L1(Ω,F ,P;Rn) with respect to G if∫

G
X(ω)dP(ω) =

∫
G
Y (ω)dP(ω) (7)

for all G ∈ G. We write E(X|G) := Y .

Proof. To be included.

Example 2.3. Let E ⊂ Ω such that 0 < P(E) < 1 and G = {∅, E,Ω \ E,Ω}. Then it holds
that

E(X|G)(ω) =
E(X1E)

P(E)
1E(ω) +

E(X1Ω\E)

P(Ω \ E)
1Ω\E(ω).

To convince us that this is indeed the case, we have to check whether the condition (7) holds
for each set in G. For example, we have∫

E
E(X|G)(ω)dP(ω) =

E(X1E)

P(E)

∫
E

1E(ω)dP(ω) = E(X1E) =

∫
E
X(ω)dP(ω).

Similarly, one can check the case for Ω \ E.

It also possible to consider conditional expectations of type E(φ(X)|F). This leads us to
conditional probability. Namely, conditional probability of an event {ω | X(ω) ∈ E} with
respect to G is defined by

Q(E,ω) = E(1E(X)|G).

Let us now study the mapping Q : G ×Ω→ [0, 1]. In our search for conditioning with respect
to a single realization (see beginning of Section 2.1) it would be crucial to know that Q(·, ω)
defines a probability measure on G for all (or at least almost all) ω ∈ Ω. Recall that by
definition ∫

G
Q(E,ω)dP(ω) =

∫
G

1E(X)dP(ω) = P(G ∩ {X ∈ E})

for all G ∈ G. We find out that Q(E, ·) is defined up to P-almost everywhere. However, since
there may be uncountably many sets in G, it is not trivial that we find a suitable version of
Q.



Definition 2.4. A family of probability distributions (µ(·, ω))ω∈Ω on (Rn,B(Rn)) is called a
regular conditional distribution of X given G ⊂ F if for each E ∈ B(Rn) we have

µ(E, ·) = E(1E(X) | G) almost surely.

When (Ω,F) is identified with (Rn,B(Rn)) and X(ω) = ω, (µ(·, ω))ω∈Rn is called a regular
conditional probability on F with respect to G.

A classical result in probability theory is the following.

Theorem 2. Let X : (Ω,F) → (Rn,B(Rn)) be a random variable and G ⊂ F a σ-algebra.
Then there exists a regular conditional distribution (µ(·, ω))ω∈Ω for X with respect to G.

We omit the proof (will add a reference!). In fact, the space Rn plays here no important
role. Instead, Theorem 2 can be generalized to e.g. complete separable metric spaces.

The rigorous meaning of µ(E, x) for x ∈ Rn is important for us. The idea is now to use
the regular conditional probability measure

µpost(E,M(ω)) = E(1E(X)|σ(M))(ω), (8)

where σ(M) ⊂ F is the σ-algebra generated by M and identify this object with µpost(E,m).

3 Playing with the Bayes formula

3.1 What is the Bayes formula?

Bayesian statistics usually begins by the notion that the joint distribution of (X,M) is given
and the posterior measure is a regular conditional distribution. Notice that, in general,
measurement model like (6) may not be available but the necessary information (like likelihood
distribution) is given via other means. In any case, important factor is that the marginal
distribution of (X,M) with respect to X is assumed to be our prior distribution. Further,
according to the Bayesian ’philosophy’, the prior should be independent of the measurement
setup.

Interesting phenomena would appear if we would allow the (rather natural) possibility
of the unknown X being generated by some different distribution than the prior. After all,
prior only models our beliefs and the partial information we have. However, in the context of
inverse problems we could easily end up in a situation where the posterior is not well-defined
(we couldn’t talk about it at all) and hence during these notes we keep the purely Bayesian
setup where X is generated by the prior.

Now, let us assume that in problem (6) our prior satisfies X ∼ µX . Due to Theorem 2
and identification of type (8) we are now able to talk about regular conditional probabili-
ties µlike(·|x) and µpost(·|m) with respect to a single realization. We are ready to state the
fundamental identity of Bayesian statistics, namely, the Bayes theorem.

Theorem 3 (Bayes). Suppose X : Ω → Rn and M : Ω → Rd satisfy equation (5). Assume
µlike(·|x)� ν for µX-almost every x ∈ Rn, where ν is a σ-finite measure. Moreover, we write

Γlike(·|x) :=
dµlike
dν

(·|x) ∈ L1(Rd, ν).



Then we have µpost(·|m)� µX for µM -almost every m ∈ Rd and

dµpost
dµX

(x|m) =
1

Z(m)
Γlike(m|x),

where Z(m) =
∫
Rn Γlike(m|x)dµX(x).

Proof. Our first concern is what is the probability of Z(m) = 0 or Z(m) =∞. Let us denote
these events by

E0 = {m|Z(m) = 0} and E∞ = {m|Z(m) =∞}.

We know that the marginal distribution of M satisfies

µM (E) =

∫
E

∫ ∫
Rn

Γlike(m|x)dµX(x)dν(m) =

∫
E
Z(m)dν(m).

It directly follows that µM (E0) = 0. Moreover, suppose ν(E∞) > 0. Then we have

µM (E∞) =

∫
E∞

∞dν(x) =∞,

which yields a contradiction since µM is a probability measure. Moreover, since µM � ν, it
must hold that also µM (E∞) = 0.

Next, the regularity of the posterior measure guarantees that we can write

P(X ∈ E,M ∈ F ) =

∫
F
µpost(E|m)dµM (m)

=

∫
F
µpost(E|m)

(∫
Rn

Γlike(m|x)dµX(x)

)
dν(m).

for any measurable sets E ∈ Rn and F ∈ Rd. Similarly, by writing the joint probability via
the regular likelihood yields

P(X ∈ E,M ∈ F ) =

∫
E

∫
F

Γlike(m|x)dν(m)dµX(x)

=

∫
F

∫
E

Γlike(m|x)dµX(x)dν(m),

where we have applied the Fubini theorem. Since E and F are arbitrary, we obtain

µpost(E|m) =

∫
E Γlike(m|x)dµX(x)∫
Rn Γlike(m|x)dµX(x)

and we are done.

Now suppose we take ν = Ld and µlike(·|x) � Ld, where Ld is the Lebesgue measure on
Rd and denote

πlike(m|x) :=
dµlike
dLd

(m|x).

Moreover, assume µX � Ln and

πX(x) :=
dµX
dLn

(x).



Then we have

µpost(E|m) =
1

Z(m)

∫
E
πlike(m|x)dµX(x)

=
1

Z(m)

∫
E
πlike(m|x)πX(x)dLn(x).

Now we see that µpost(·|m)� Ln and

πpost(x|m) =
dµpost
dLn

(x|m)

=
πlike(x|m)πX(x)

Z(m)

Since we have ∫
F
πM (m)dLd(m) = P(M ∈ F )

= P(X ∈ Rn,M ∈ F )

=

∫
Rn

µlike(F |x)dµX(x)

=

∫
F

∫
Rn

πlike(m|x)dµX(x)dLd(m)

=

∫
F
Z(m)d(m),

it follows that Z(m) = πM (m) for µM -almost every m ∈ Rd.

Corollary 3.1. Suppose all probability distributions related to problem (5) have well-defined
probability densities. Then the density function representation of the Bayes formula

πpost(x | m) =
πlike(m | x)πX(x)

πM (m)
, (9)

holds, where πpost, πlike and πX represent the posterior, likelihood and prior density, respec-
tively. Moreover, πM is the marginal distribution of the measurement M .

3.2 Example: Gaussian posterior

Let us next move to studying how the posterior density looks like in the canonical example
when the prior and likelihood have Gaussian statistics. Before proceeding, we record what is
a Gaussian random variable on Rn.

Definition 3.2. Let x0 ∈ Rn and C ∈ Rn×n be a symmetric positive definite matrix. A
Gaussian n-variate random variable X with mean x0 and covariance C is a random variable
with the probability density

πX(x) =
1√

(2π)n detC
exp

(
−1

2
(x− x0)>C−1(x− x0)

)
.

We denote the Gaussian distribution by X ∼ N (x0, C0).



Let us recall that covariance matrix of (any) random variable X is defined by

C = E(X − EX)(X − EX)>.

A Gaussian distribution is completely characterized by its mean and covariance.

Notice that the expression (x− x0)>C−1(x− x0) can also be written in form
∥∥C−1/2x

∥∥2

2

since due to our assumptions on C the inverse square root C−1/2 is well-defined. Sometimes,
when the posteriori distribution is of the form const ·exp(−F (x)), one can try to rewrite F as
a sum of a quadratic form and constant term in order to show that the posterior is Gaussian
(and to solve what is mean and covariance). This method is called completing the square and
it is what we essentially do in the following.

Since research on inverse problems most often is based on some model equation (5), we
have a connection between the likelihood and noise distributions.

Remark 3.3 (Likelihood). Suppose E ∼ µE � Ld and πnoise(e) = dµE
dLd (e). The regular

conditional probability satisfies

P(M ∈ E|X = x) = P(Ax+ E ∈ E) = P(E ∈ {e−Ax | e ∈ E}).

Therefore, it must hold that

πlike(m|x) = πnoise(m−Ax).

In order to analyse the Gaussian posterior further, we need some machinery from linear
algebra.

Definition 3.4. Let

C =

(
C11 C12

C21 C22

)
be a positive definite symmetric matrix. We define the Schur complements C̃jj of Cjj, j = 1, 2,
by

C̃22 := C11 − C12C
−1
22 C21 and

C̃11 := C22 − C21C
−1
11 C12.

Lemma 3.5. The Schur complements C̃jj are invertible and

C−1 =

(
C̃−1

22 −C̃−1
22 C12C

−1
22

−C̃−1
11 C21C

−1
11 C̃−1

11

)
Proof. Left for exercise.

For the following, let X ∼ N (x0, C0) and E ∼ N (0,Γ). Recall that X and E are assumed
to be independent. Next, consider the distribution of the measurement M . The equality (5)
implies that we have m0 := EM = Ax0 and

E(M −m0)(M −m0)> = E(A(X − x0) + E)(A(X − x0) + E)> = AC0A
> + Γ.

Moreover, we have

E(X − x0)(M −m0)> = E(X − x0)(A(X − x0) + E)> = C0A
>



The joint distribution of X and M then has a covariance

Cov

(
X
M

)
= E

((
X − x0

M −m0

)(
X − x0

M −m0

)>)
=

(
C0 C0A

>

AC0 AC0A
> + Γ

)
.

Therefore, it follows that

π(x,m) ' exp

{
−1

2

(
X − x0

M −m0

)(
C0 C0A

>

AC0 AC0A
> + Γ

)(
X − x0

M −m0

)>}

In order to ease our notations, let Cij , i, j = 1, 2, denote the components of Cov

(
X
M

)
. In

addition, we make a simplification of assuming x0 = 0 (and thus also m0 = 0). This can be
considered as a translation of the coordinates, and the equations below can be adjusted for
general case simply by replacing x with x− x0 and m with m−m0.

The crucial idea now is that we are interested in the posterior distribution only through
behaviour of x whereas m plays the role of constant for us. Therefore, we have by the Bayes
formula that

πpost(x|m) ' π(x,m).

In consequence, the joint density of the form

π(x,m) ' exp

(
−1

2
(x>C̃−1

22 x− 2x>C̃−1
22 C12C

−1
22 m+m>C̃−1

11 m)

)
' exp

(
−1

2
(x− C12C

−1
22 m)>C̃−1

22 (x− C12C
−1
22 m) + const

)
Now we obtain the mean and covariance of the posterior µpost(·|m) ∼ N (x̄, Cpost) as

Cpost = C̃22 = C0 − C0A
>(AC0A

> + Γ)−1AC0

and
x̄ = C12C

−1
22 m = C0A

>(AC0A
> + Γ)−1m.

Notice carefully that the covariance Cpost is independent of the mean x0 (also mean of the
noise if that would be non-zero). Luckily, we have a more compact expression for these
objects.

Theorem 4. Let X ∼ N (x0, C0) and E ∼ N (0,Γ), and assume that equation (5) holds. Then
we have

πpost(x|m) ' exp

(
−1

2
(x− x̄)>C−1

post(x− x̄)

)
,

where
Cpost = (A>ΓA+ C−1

0 )−1

and
x̄ = Cpost(A

>Γ−1m+ C−1
0 x0).

Proof. Will follow on the next lecture.


