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1 Real-valued random variables

1.1 Basic definitions

Let 7 : R — R be a probability density function satisfying

/oo m(x)dr = 1. (1)

We consider a random variable X, taking values in R, whose probability distribution
is described by the function w. The interpretation is that the probability of a
randomly sampled value of X belonging to the interval [a, b] is given by the integral
fabw(x)dx. More generally, if &/ C R is a Lebesgue measurable set, then

Pr(X e F) = /EW(:E)d:E.

For more general cases, when the probability distribution of X is described by a
measure (and not necessarily by a probability density function), see for example [1].
Define the cumulative distribution function F': R — [0, 1] by

F(z) := /f m(x)dx. (2)

—0o0

1.2 Sampling a random variable

We are interested in producing algorithmically a random sequence ", 2 2@ 2(0)

of real numbers in such a way that their distribution follows a given probability den-
sity function 7 : R — R* satisfying condition ([1)).
The trick is two-fold:
1. Use the Matlab command rand to produce a sequence t(, ¢ t®) . ¢(N) of
floating point numbers (pseudo-)randomly picked from the uniform probability
distribution on the interval [0, 1].

2. Define 29 := F~'(tY) for £ =1,...,N.

Of course, there are several things to check for ensuring that the above trick works.
Most notably, is it well-defined to apply the inverse function F~!'? Also, how to
make sure that the resulting points are correctly distributed? These are left as
exercises.

1.3 Computational example

Let us consider the special case

3(1—2?), forlz| <1
—J 1 v v
() { 0 otherwise. (3)
See Figure (1] for plots of the above probability density function and the correspond-
ing cumulative distribution function. Figure 2| shows the cumulative distribution
function and its inverse. See Figure |3| for a comparison of sample histograms with
the probability density function.
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Figure 1: Top: Probability density function 7(x). Bottom: Cumulative distribution

function.
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Figure 2: Left: Cumulative distribution function F' : R — [0,1]. Right: Inverse
F~1:0,1] — R of the cumulative distribution function.
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Figure 3: Top: histogram of 1000 random samples. Middle: histogram of 10000
random samples. Bottom: histogram of 1000000 random samples.



1.4 The Bayes formula

Let us consider a joint probability density mxy : R? — R of two R-valued random
variables X and Y. We must have

mxy(z,y) > 0forall z,y € R, (4)

/Z/way(x,y)dmdy " (5)

Now the probability that a sampled pair (z(!), y) belongs to the rectangle [a, b] x
[c,d] is given by the integral

b rd
Pr(a < M <pand ¢ < y(l) <d)= / / Txy (x,y)dxdy.

Now we can define the marginal distributions of X and Y by

[e.e]

wx@ = [ rwdn w) = [ neeas

—00 —00

respectively. Furthermore, the conditional probability of X given a fixed value of Y
is defined by
Txy (2, )
Txy(z|ly) = ——==. 6
X|Y( | ) Wy(y) ( )

It is easy to check that

/ x|y (zly)de = 1.

o0

Similarly we define the conditional probability of M given a fixed value of X by

o WXY(:L‘7 y)
A combination of (6] and (7)) yields the Bayes formula

mx (%) Ty x (y]7)
Ty (y)

7TX|Y(9C|?/) =

2 Principle of Bayesian inversion

Inverse problems arise in situations where noisy data is measured from an object.
The direct problem is given object, what is the data? The inverse problem is given
noisy data, recover information about the object.

For more concrete explanation we need to specify a mathematical model of the
measurement.



2.1 Measurement model

Consider the equation
M =AF+ & (9)

that models indirect linear measurement contaminated with additive noise. (We do
not discuss nonlinear measuremernts or other than additive noise in this course.) In

equation ()

e The measurement M is a random vector taking values in R¥,

e The noise £ is a random vector taking values in R¥, with probability density
function ¢,

e The object F'is a random vector taking values in R",

e The deterministic (in other words, not random) kxn matrix A models the
measurement process.

The randomness of £, and therefore that of M, arises from the nature of inevitable
random errors present in practical measurement devices. The randomness of the
object F' models our lack of information about it. This is not seen here as a philo-
sophical issue but rather as a pragmatic modelling choice.

2.2 The inverse problem

Assume that your measurement device produces a vector m € R¥. Further, assuming
that equation @ is a reasonably accurate model of the measurement process, we
can formulate the inverse problem as follows:

Given a realization m of the random variable M, estimate the object F.

Often the estimate takes the form of a suitable n-dimensional vector, possibly aug-
mented with uncertainty quantification such as credibility intervals. Most important
examples of useful estimates include the mazimum a posteriori (MAP) estimate and
the conditional mean (CM) estimate, which will be defined below.

2.3 Posterior density as the solution of inverse problem

Recall that in ill-posed inverse problems the measurement information is typically
not sufficient for stable recovery of information about the object. Therefore, ro-
bust inversion is always based on complementing measurement data with a prior:
information. This can be done using the Bayes formula.

Given the measurement model @D, we can write the Bayes formula connecting
the object and measurement:

mr(f) 7TM|F(m!f)'

mar(m)

(10)

Tr (flm) =
In equation ([10]), each function on the right-hand side has a special meaning:
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e The prior model mp(f) describes a priori information. The function 7g(f)
should assign high probability to objects f that are typical in light of a priori
information, and low probability to unexpected f. It is a central challenge in
Bayesian inversion to construct a function 7y that describes a prior: informa-
tion accurately and is quick to evaluate computationally.

e The likelihood model 7y p(m|f) processes measurement information. It gives
low probability to objects that produce simulated data which is very different
from the measured data.

e The number my,(m) can be seen as a normalization constant.

In ill-posed inverse problems there may be infinitely many objects giving roughly
the maximum likelihood probability, making the use of a prior model necessary.

2.4 A simple example: measuring temperature

Consider checking the temperature in the morning before leaving for the university.
Assume that your thermometer showed 3°C. (This is Helsinki, Finland, so it’s not
very warm. I recommend the Java island for friends of warmth.)

We model the reading of the thermometer like this:

M=F+¢, (11)

where M, F' and £ are random variables all taking values in R. Furthermore, we
assume that the additive noise £ is normally distributed with mean g = 0 and
standard deviation o > 0:

——expl— (e — ). (12)

Note that formula describes the classical Gaussian bell curve.
Then the likelihood model takes the form

1 1

oo eXP(—ﬁ(

7Tg<€) =

m — f)?), (13)

muip(m|f) = me(m — f) =

where we used equations and .

In this very simple example we use the “flat prior” 7g(f) = 1, although it does
not integrate to 1. We could do something more sensible but just don’t. Neverthe-
less, the posterior distribution will behave well.

Then the posterior distribution takes the following form, up to a constant C"

e (f) 7TM|F(m|f)

T (m)

e (flm) =

1 2
= Cexp(=g—(m — f)7). (14)
See Figure Now assume that o = 0.4 and recall that m = 3. The posterior is
T (f]3) = Ce 13097, (1)

See Figure [f] for a plot.



Figure 4: Likelihood function gy (f|m) of equation (13).
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Figure 5: Posterior distribution 7ga(f|3) of equation (15)).
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