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Next we will give short introduction to stochastic processes and
random fields

Motivation: stochastic processes and random fields can be used for
(for example):

Dynamical or nonstationary inverse problems: unknown and other
quantities are temporally varying (functions of time).

Spatial priors: prior models for distributed unknown quantities
(unknowns are functions of the spatial coordinate x).

Spatial priors are presented at the end of this presentation
Dynamical inverse problems and different solution methods are the
subject of the rest of part 2 (lectures L17->).
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Stochastic process
A stochastic process is a parametrized collection of random variables:
{X (s)}s∈D where D is a set.

Usual terminology:
Discrete process: D = {0, 1, 2, . . .} (or some other discrete set)
(Continuous time) stochastic process: D is a subset of real line R
and s is usually time: e.g. {X (t)}t≥0

Random field: D is a subset of Rd (d = 1, 2, . . .) and the parameter
s is a spatial coordinate x . Example: {X (x)}x∈S1 , where
SR = {x ∈ R3 : ‖x‖ = R} is a sphere in R3 (typical for modelling
processes on the surface of Earth e.g. in climate)
Space-time process: e.g. {X (t, x) : t ≥ 0, x ∈ D}, D ⊂ Rd

Commonly the set D is not specified in the notation if it is known from the
context. The brackets are also often omitted and the process is simply
denoted by X (s) or X (x). Notations Xk and Xt are also common for
discrete and continuous time processes.
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How to think stochastic processes?

In probability theory, random variables are defined as functions of
ω ∈ Ω. Similarly stochastic processes can be considered as functions
of s and ω: X (ω, s) or X (s, ω)

Stochastic processes and random fields can also be thought as
function valued random variables:

Random variables: realizations are real numbers: X (ω) ∈ R when ω is
fixed
Random vectors: realizations are vectors: X (ω) ∈ Rn when ω is fixed
Stochastic processes and random fields: when ω is fixed, X (ω) is a
function of the parameter s, that is, s → X (ω, s),
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Simple example about a stochastic process

Specify six functions

f 1(t) = t

f 2(t) = sin(t),

f 3(t) = log(t + 1),

f 4(t) = t2 − t,

f 5(t) = cos(t),

f 6(t) = 1.

Let ω ∈ {1, . . . , 6} be an outcome of throwing a dice. We can specify
a stochastic process by X (ω, t) = f ω(t).
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White noise Random walk White noise
(discrete) (discrete) (continuous)
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Figure: Examples of stochastic processes: red, green and blue are three different
realizations of the process.
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Figure: Realizations from different random fields (all Gaussian).
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Basic concepts

The mean function: µ(s) = E [X (s)], s ∈ D.

The covariance function:

C (s, s ′) = cov(X (s),X (s ′)) = E
[
(X (s)− µ(s))(X (s ′)− µ(s ′))

]
for s, s ′ ∈ D.

Note: var(X (s)) = E
[
(X (s)− µ(s))2] = C (s, s).
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Finite dimensional joint-distributions: let s1, . . . , sn be a points in D.
The finite dimensional joint-distributions of a process X (s) are given
by

Fs1,...,sn(y1, . . . , yn) = P(X (s1) ≤ y1, . . . ,X (sn) ≤ yn)

for y1, . . . , yn ∈ R.

Stationary process
A process X (s) is called (strictly) stationary if for every set of points
s1, . . . , sn in D, the finite dimensional joint-distributions are shift-invariant:

Fs1+h,...,sn+h(y1, . . . , yn) = Fs1,...,sn(y1, . . . , yn)

for all h ∈ D such that si + h ∈ D.
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Weakly stationary process
A process X (s) is called weakly stationary if for all s, s ′ and h:

µ(s + h) = µ(s) C (s + h, s ′ + h) = C (s, s ′) = C (s − s ′).

In other words: weakly stationary process has the mean function which
is a constant and the covariance is a only function of τ = s − s ′, C (τ)

A strictly stationary process is also weakly stationary, opposite is not
always true.
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Isotriphic process
A process X (s) is called isotrophic if for all s, s ′:

C (s, s ′) = C (
∥∥s − s ′

∥∥).

In other words, the process is isotropic if the covariance function can
be expresses as a function of the distance r = ‖s − s ′‖ (no directional
dependency).
Processes that are not isotrophic (i.e. the covariance depends on the
direction) are called as anisotrophic.
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Gaussian processes
The process is called Gaussian if (X (s1), . . . ,X (sn)) is a Gaussian random
vector for all sets of points s1, . . . , sn ∈ D.

In other words, the process is Gaussian if all finite dimensional
joint-distributions are Gaussian
Gaussian processes are completely determined by the mean and
covariance function
Weakly stationary Gaussian processes are also strictly stationary

GMRF: Gaussian Markov random field
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Figure: Realizations from Gaussian random fields. Top row: white noise (left) and
two realizations of a same isotrophic random field (middle and right). Bottom
row: a realization of an anisotrophic random field (left), and two different
nonstationary random fields (middle, right).
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The following Markov property is useful with Kalman filters (dynamic
inverse problems):

Markov property for a discrete process
A discrete process Xk has so called Markov property, if the conditional
probability distribution of Xk given all states Xs , s < k , equals to the
conditional probability distribution of Xk given the previous state Xk−1:

p(xk |xs , s < k) = p(xk |xk−1)

In other words, if Xk−1 is known, the knowledge of Xk−2,Xk−3, . . . does
provide any additional information about the current state Xk

Markov property can also be given for continuous processes and
random fields (omitted in this course).
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Practical use of Gaussian random fields

Often unknown quantities are modelled as Gaussian variables since
Gaussian distributions leads to computational efficient problems, or we
just do not know any better distribution for the variable

From now on we only consider Gaussian random fields

When we consider Gaussian random fields, we only need to think
about the mean and covariance function
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The mean function

The mean can be chosen based on the prior information related to the
problem.
Often the mean function is written a sum of functions basis φi
functions:

µ(s) =
∑
i

θiφi (s)

for which the coefficients θi are determined based on some sort of
data (e.g. hyper parameters in inverse problems).
The form of basis functions is chosen based on the application: e.g.
piecewise linear functions, polynomials, sin and cos functions (wave
propagation problems).

Janne Huttunen (UEF) Random fields and spatial priors November 10, 2015 16 / 43



The covariance function

In principle the form of the covariance function could be chosen to be
a function of s and s ′ which can also include some parameters (e.g.
variance and scaling parameters) that are determined based on data

However the covariance function should satisfy some requirements
implied by the definition

Furthermore, some attention should be paid to check that the random
field will have preferred continuity and smoothness properties
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Requirements for covariance functions

First of all, C has to be symmetric: C (s, s ′) = C (s ′, s) for all
s, s ′ ∈ D. For stationary process: C (τ) = C (−τ) where τ = s − s ′.
Furthermore, consider a set of points {si ∈ D : i = 1, . . . , n} and let
K be a n × n matrix such that the elements are

Kij = C (si , sj), i , j = 1, . . . , n

If C is the covariance function of a process X , the matrix K is the
covariance matrix of the n-dimensional random vector
(X (s1), . . . ,X (sn)).
All covariance matrices should be positive semidefinite: xTKx ≥ 0 for
all vectors x ∈ Rn

Therefore the covariance function has to be positive semidefinite: for
all set of points {s1, . . . , sn} ⊂ D, the matrix K given above is positive
semidefinite.
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Continuity and smoothness

The process is said to be continuous in mean square at s∗ if
E
[
|X (sk)− X (s∗)|2

]
→ 0 for all sequences sk → s∗. Mean square

derivatives are defined similarly using fractions X (sk )−X (s∗)
sk−s∗ .

A stochastic process X is continuous in mean square at s∗ if and only
if C (s, s ′) is continuous at s = s ′ = s∗. For stationary X , it is
sufficient to check continuity of C (τ) at τ = 0.
The derivates of C determines the smoothness of X : if ∂

2C(s,s′)
∂si∂s

′
i

exists

and is finite, ∂X∂si exists (in mean square sense) and its covariance

function is ∂2C(s,s′)
∂si∂s

′
i
. Higher order derivatives similarly.

Stationary X : if ∂
2kC(τ)
∂d2k

exists and is finite at τ = 0, the derivative
∂kX
∂sk

exists (in mean square sense).

Summary (what should be remembered from the slide)
The continuity and smoothness of X are determined by the continuity and
smoothness of the covariance function at s = s ′ at τ = 0.
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Examples of covariance functions

Squared exponential covariance function
Squared exponential covariance function:

C (τ) = exp

(
−‖τ‖

2

2`2

)

where ` > 0 is scaling parameter often called as characteristic length-scale.

Simple form and very widely used
C (τ) is infinitely differentiable
⇒ X has mean square derivates of all
orders and thus very smooth
Such very strong smoothness
properties may be unrealistic in many
applications
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Examples of covariance functions

Exponential covariance function
Exponential covariance function is of the form

C (τ) = exp
(
−‖τ‖

`

)

C continuous but not differentiable at
τ = 0 ⇒ the process is continuous in
mean square, but not differentiable
May be too rough process for many
applications (especially if smoothness
is preferred) 0 0.2 0.4 0.6 0.8 1
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Examples of covariance functions

Mátern class of covariance functions
Mátern class of covariance functions is given by

Cν(τ) =
21−ν

Γ(ν)

(√
2ν ‖τ‖
`

)ν
Kν

(√
2ν ‖τ‖
`

)

where ν and ` are positive parameters and Kν is the modified Bessel
function of second order.

The parameter ν determines the smoothness properties of the process:
the process is k ’th times mean square differentiable if and only if
ν > k .
Furthermore, the limit ν →∞ gives the squared exponential
covariance function, ν = 1

2 gives the exponential covariance function.
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Examples of covariance functions

For other half integers ν = p + 1
2 (p > 0), the Matérn covariance

functions are products of an exponential function and a polynomial of
order p:

Cν= 3
2
(τ) =

(
1 +

√
3 ‖τ‖
`

)
exp

(
−
√
3 ‖τ‖
`

)

Cν= 5
2
(τ) =

(
1 +

√
5 ‖τ‖
`

+
5 ‖τ‖2

3`2

)
exp

(
−
√
5 ‖τ‖
`

)
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Figure: Two realizations from the Matérn class with ν = 3
2Janne Huttunen (UEF) Random fields and spatial priors November 10, 2015 23 / 43



The covariances functions can be also formed as combination of
several covariance function:

The sum of two covariance functions is also a valid covariance function
(the covariance function of X1(s) + X2(s) of when X1 and X2 are
independent)

The product of two covariance functions is also a valid covariance
function (the covariance function of X1(s)X2(s) when X1 and X2 are
independent). Thus also C (s, s ′)p is a valid covariance function.

Let a(s) be a deterministic function. Then the covariance function of
Y (s) = a(s)X (s) is a(s)C (s, s ′)a(s ′) if C is the covariance function of
the process X (s).
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Spatially varying variance

All of the above covariance functions are stationary and isotropic, and
normalized such that C (0) = var(X (s)) = 1.

Sometimes we may want more flexibility and, for example, choose the
variance as a function of s, σ(s). Then we can write e.g.:

X (s) = µ(s) + σ(s)X ′(s)

and consider the construction of X ′(s) as a stationary process.

If the covariance of X ′(s) is C ′(s, s ′), the covariance of X is
C (s, s ′) = σ(s)σ(s ′)C ′(s, s ′) (as in the previous slide)
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Anisotrophic covariance functions

The above correlation functions can be modified for anisotrophical
cases (correlation different to different directions) easily.
We consider only stationary two–dimensional case, other dimensions
are similar
The previous isotrophic correlation functions include the term

‖τ‖ /` =

√
τ2x
`2

+
τ2y
`2

where τ = (τx , τy )

To introduce different characteristic length-scales to the x and

y -direction, we can replace this terms with
√

τ2x
`2x

+
τ2y
`2y

For example, anisotrophic squared exponential covariance function:

C (τ) = exp

{
−1
2

(
τ2
x

`2x
+
τ2
y

`2y

)}
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Anisotrophic covariance functions

Other directions can be handled using coordinate transformations
Note that

τ2
x

`2x
+
τ2
y

`2y
= τTΛτ, Λ = diag(`−2

x , `−2
y ).

We apply an coordinate transform
matrix C and replace the term with

τTCΛCTτ

E.g. C can be a rotation matrix

C =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
which rotates points in xy -plane
counter-clockwise with an angle θ
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Example: stochastic interpolation (Kriging)

Random fields can be applied for interpolation of a function as follows.

For example, we have an unknown function X : [0, 1] 7→ R.

We have observations of X at a given set of points x1, . . . , xn ∈ [0, 1]:
yi = X (xi ), i = 1, . . . , n.

We want to estimate the value of X in an arbitrary point x0 ∈ [0, 1]
(interpolation).
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Example: stochastic interpolation (Kriging)

We model X as a Gaussian random field.
In this example, we choose µ(s) = 0 and C is the Matérn covariance
function with ν = 3/2
Define random variables X = X (x0) and
Y = (y1, . . . , yn)T = (X (x1), . . . ,X (xn))T.
Since X and Y are jointly Gaussian random variables, the conditional
distribution of X given Y is Gaussian: N (X̂, σ2

X|Y) where

X̂ = X̄ + ΓXYΓ−1
Y (Y − Ȳ)

σ2
X|Y = σ2

X − ΓXYΓ−1
Y ΓT

XY

(see the preliminaries PDF)
The above equations gives our solution: the mean X̂ gives an estimate
for X (x0) and σ2

X|Y is an estimate of its uncertainty (variance). For
interpolation, we can vary x0.
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Example: stochastic interpolation (Kriging)

Before we can use the above equations, we need to calculate the
expectations of X and Y, the variance σ2

X, the covariance ΓY and the
cross-covariance ΓXY

The expectations are given by the mean function: X̄ = µ(x0) = 0 and
Ȳ = (µ(x1), . . . , µ(xn))T = 0

The variance of X is σ2
X = C (x0, x0)

The covariance of Y is the matrix ΓY which elements are C (xi , xj)
(i , j = 1, . . . , n)
The cross-covariance of X and Y is ΓXY = (C (x0, x1), . . . ,C (x0, xn))

Note: it is easy to expand the approach for noise-corrupted
measurements yi = X (xi ) + εi , where ε ∼ N (0, σ2

ε I ) independent of
X . In this case ΓY in the above formulae is replaced with ΓY + σ2

ε I .
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Example: stochastic interpolation

`/
√
3 = 0.1, σε = 0 `/

√
3 = 2, σε = 0
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Figure: Stochastic interpolation: the blue line is the true function f and the black
line is the estimate. The gray band corresponds to 2xS.D. error limits. Starts
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Spatial priors

Spatial priors: prior models inverse problems in which unknowns
depend on the spatial coordinate x (e.g. heterogeneous variables).

Unknown quantities are modelled as random fields

The prior distribution is given by the distribution of random field.

If can be assumed to be Gaussian:
⇒ specify the mean and covariance function
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Example: Electrical impedance tomography (EIT)

Unknown (electric) conductivity
distribution σ(x) is a
heterogenous variable

We want to determine σ (e.g.
tomographic imaging)

Electrodes on boundary

Inject electric currents I
→ measure voltages U

Problem: reconstruct σ from
(I ,U) information
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Spatial priors

Consider an inverse problem in which unknown X (x) is a spatially
varying function (distributed parameter, a heterogeneous variable)
X (x) can be modelled as a random field
To specify a Gaussian prior: specify mean function µ(x) and
covariance function C (x , x ′)

The mean µ(x) is specified based on prior information related to the
application
For the covariance function C (x , x ′) can be chosen to be, for example,
one of the listed previously based on the prior knowlege. For example:

expected to be very smooth → squared exponential
expected to non-smooth → exponential
Matérn if between those

Janne Huttunen (UEF) Random fields and spatial priors November 10, 2015 34 / 43



Spatial priors: practical implementation

The inverse problem is usually discretized numerically for practical
implementation (e.g. finite difference method, finite element method)
The discretized unknown often represents the unknown X (x) in a grid
of points.
Let {xi , i = 1, . . . , n} be such grid points.
Then prior can be chosen as N (µ,Γ) where

µ = (µ(x1), . . . , µ(xn))T

Γ(i , j) = C (xi , xj), i , j = 1, . . . , n.
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Sometimes the expected variance of the field can also depend on the
spatial variable
We could specify a non-stationary covariance
However, it is usually easier to work with stationary covariances and,
for example, specify X as

X (x) = µ(x) + σ(x)W (x)

where σ(x) is preferred variance (also chosen based on the problem)
and W is a stationary random field (zero mean)
The stationary covariance is specified for W
Then CX (x , x ′) = σ(x)C (x , x ′)σ(x ′) and

Γ(i , j) = σ(xi )C (xi , xj)σ(xj)
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Electrical impedance tomography in a circular tank

True conductivity Matérn

Gradient prior Identity matrix
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Ground prospecting with anisotropic conductivities

True conductivity Isotropic Mátern

Anisotropic gradient Anisotropic Mátern
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Hierarchical prior models (hyperparameters)

Priors can include parameters that are not precisely known

For example: mean, variance, length-scale `

We can model these as hierarchical prior parameters often called as
hyperparameters:

Consider such parameters also as unknown in the inverse problems

Write a prior model for the hyper parameters

Consider both the primary unknown X and the hyper parameters as
unknown and estimate it from the data
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Example of hyper parameters

We consider an example:
Assume that the mean is presented using basis functions θi

µ(x) =

p∑
i=1

γiφi (x)

where γi are unknown.
Assume that the variance σ2 (assumed to be a constant) and the
length-scale ` in the covariance function are also unknown
We denote the vector of hyper parameters by θ:

θ = (γ1, . . . , γp, σ
2, `)
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Example of hierarchical models

Discretization: X presented at points x1, . . . , xn

For discretized prior mean: µX = (µ(x1), . . . , µ(xn))T = Φγ where

Φ =

 φ1(x1) · · · φ1(xn)
...

. . .
...

φp(x1) · · · φp(xn)

 , γ =

 γ1
...
γp


The prior model:

π(X , θ) = π(X |θ)π(θ)

where

π(X |θ) ∝ e−
1
2 [(X−Φγ)TΓ−1X (σ2,`)(X−Φγ)+log det(ΓX (σ2,`))]

The log term is due to the normalization constant (which now
depends on the unknown hyperparameters and has to be included).
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The hyperprior π(θ) is specified by using prior knowledge/beliefs of
hyper parameters.
For example: γ ∼ N (0, Γγ) with known Γγ

Inverses of the variances are often modelled using Gamma
distributions:

π(σ−2) = Gamma(ασ, βσ) or π(σ2) = InvGamma(ασ, βσ)

⇒ π(σ2) ∝ (σ2)−ασ−1e−βσ/σ
2

= e−βσ/σ
2−(ασ+1) log σ2

The scale length parameter can be chosen to follow, for example,
Gamma distribution

π(`) ∝ `α`−1e−β`` = e−β``−(1−α`) log `

Usually the hyper parameters are assumed to be independent:

π(θ) = π(γ)π(σ2)π(`)
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The posterior is π(X , θ|m) ∝ π(m|X )π(X |θ)π(θ)

If we have an observation model m = A(x) + ε, ε ∼ N (0, Γε), the
posterior for our example is

− log π(X , θ|m)

=
1
2

(m − A(x))TΓ−1
ε (m − A(x))

+
1
2

(X − Φγ)T Γ−1
X (σ2, `) (X − Φγ) +

1
2
log det(ΓX (σ2, `))

+
1
2
γTΓ−1

γ γ + βσ/σ
2 + (ασ + 1) log σ2 + β``+ (1− α`) log `

The above function can be minimized using optimization algorithms
(e.g. Gauss-Newton) to compute MAP estimate, or use MCMC
methods for CM estimates.
Furthermore, if the posterior is simple, the hyper parameters could
perhaps be integrated out to obtain π(X |m)
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