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We start with few results related matrix calculation.

Block matrix inversion
A, B , C and D are matrices such that A and D are non-singular square
matrices. Then Gauss elimination gives

(
A B
C D

)−1
=

(
A−1 + A−1BΓ−1

A CA−1 −A−1BΓ−1
A

−Γ−1
A CA−1 Γ−1

A

)
=

(
Γ−1
D −Γ−1

D BD−1

−D−1CΓ−1
D D−1 + D−1CΓ−1

D BD−1

)

where ΓA = D − CA−1B and ΓD = A− BD−1C (Schur complements).

Special case: (
A 0
0 D

)−1

=

(
A−1 0
0 D−1

)
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Comparing the blocks in the block matrix inversion formula gives two
important matrix identities:

Matrix inversion lemma

(A− BD−1C )−1 = A−1 + A−1B(D − CA−1B)−1CA−1

This result is also known as Sherman–Morrison–Woodbury formula or
Woodbury formula.

Matrix inversion identity

A−1B(D − CA−1B)−1 = (A− BD−1C )−1BD−1
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Short review to probability theory and random variables

A random variable X is a function X : Ω 7→ R where Ω is a set called
sample space. The elements ω ∈ Ω are called samples.
The value X (ω) for fixed ω is called as a realization of X .
(Cumulative) distribution of X is a function F : R 7→ [0, 1] such that

F (y) = P(X ≤ y), y ∈ R

where P denotes probability: P(X ≤ y) is probability for the event
that the value of X is less or equal to y .
The variance of X is

σ2
X = var(X ) = E

[
(X − E [X ])2] = E

[
X 2]− (E [X ])2 ≥ 0

The standard deviations of X is σX =
√

var(X )
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A random variable X is called a continuos random variable if there is a
function p : R→ R such that

F (y) =

∫ y

−∞
p(x)dx

The function p is called as the probability density of X .
Note: F (∞) =

∫∞
−∞ p(x)dx = 1.

The expectations is E [X ] =
∫∞
−∞ xp(x)dx .

More generally

E [f (X )] =

∫ ∞
−∞

f (x)p(x)dx

for functions f for which the integral is defined.
During the lectures, we usually assume that random variables are
continuous (especially if we are using the probability density p)
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Multidimensional random variables

A n–dimensional random variable (or random vector) is a function
X : Ω 7→ Rn.
Can also be tough as a vector of random variables

X = (X1, . . . ,Xn)T

where X1, . . . ,Xn are random variables.
The expectation of X : E [X ] = (E [X1] , . . . ,E [Xn])T

The covariance of X :

covX = E
[
(X − E [X ])(X − E [X ])T

]

=

 E [(X1 − E [X1])(X1 − E [X1])] · · · E [(X1 − E [X1])(Xn − E [Xn])]
...

. . .
...

E [(Xn − E [Xn])(X1 − E [X1])] · · · E [(Xn − E [Xn])(Xn − E [Xn])]
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A symmetric matrix K is called positive definite if xTKx > 0 for all
vectors x 6= 0 (or equivalently, all eigenvalues are positive).
A symmetric matrix K is called positive semi-definite if xTKx ≥ 0 for
all x (or all eigenvalues are non-negative).
Positive semi-definite matrix is also positive definite, if it is not
singular (i.e. det(K ) 6= 0 or ∃K−1).
Covariance matrices are symmetric and positive-semidefinite:

cov(X )T = E
[
[(X − E [X ])(X − E [X ])T]T

]
= E

[
[(X − E [X ])(X − E [X ])T]

]
= cov(X )

xTcov(X )x = E
[
xT(X − E [X ])(X − E [X ])Tx

]
= E

[
[(X − E [X ])Tx]︸ ︷︷ ︸

∈R

T
(X − E [X ])Tx︸ ︷︷ ︸

∈R

]
= E

[
|(X − E [X ])Tx |2

]
≥ 0

Janne Huttunen (UEF) Review to probability and random variables September 26, 2013 7 / 18



Cumulative distribution of a random vector X is F : Rn → [0, 1] such
that

F (y) = P(X1 ≤ y1, . . . ,Xn ≤ yn), y ∈ Rn

Continuous random vectors: there is a probability density function
p : Rn → R such that

F (y) =

∫ y1

−∞
· · ·
∫ yn

−∞
p(x1, . . . , xn)dx1 · · · dxn

Then

E [f (X )] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f (x)p(x1, . . . , xn)dx1 · · · dxn

E.g.

E [Xi ] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

xip(x1, . . . , xn)dx1 · · · dxn

Janne Huttunen (UEF) Review to probability and random variables September 26, 2013 8 / 18



Let X and Y be random variables. Then the vector (X ,Y ) forms a
new random vector.
The joint probability density of X and Y is the probability density
function p(x , y) of (X ,Y )

The covariance of (X ,Y ) is(
Γx Γxy

Γyx Γy

)
where Γx and Γy are covariances of X and Y and Γxy and Γyx are the
cross-covariances:

Γxy = E
[
(X − E [X ])(Y − E [Y ])T] ,

Γyx = E
[
(Y − E [Y ])(X − E [X ])T] = ΓT

xy

If X and Y independent, X and Y are uncorrelated (Γxy = 0,
Γyx = 0). The opposite is not always true.
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Marginal densities:

p(x) =

∫ ∞
−∞

p(x , y)dy and p(y) =

∫ ∞
−∞

p(x , y)dx

The conditional probability density for X given Y :

p(x |y) =
p(x , y)

p(y)

If X and Y are independent: p(x , y) = p(x)p(y). Also p(x |y) = p(x).
Identity p(x , y) = p(x |y)p(y) = p(y |x)p(x) gives important results:

Bayes rule

p(x |y) =
p(y |x)p(x)

p(y)
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Normal distributions
A random variable X is called normal or Gaussian if the probability density
is of the form

p(x) =
1√

(2π)n det(Γx)
exp
{
−1
2

(x − x̄)T Γ−1
x (x − x̄)

}
where x̄ and Γx are the expectation and covariance of X . Normal
distributions are denoted as N (x̄ , Γx).

Note that normal distributions are completely determined by its
expectation and covariance.
Thus a common approach is to check that distribution is Gaussian and
then calculate the expectation and covariance
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The definition can be extended also for singular covariances Γx using
characteristic functions φ(ξ) = E

[
e iξ

TX
]
, ξ ∈ Rn where i =

√
−1.

If X is continuos, φ(ξ) =
∫
e iξ

Txp(x)dx (the Fourier transform of p).

Normal distributions (extended definition)
A random variable X is normal if its characteristic function φ is of the form

φ(ξ) = e iξ
Tx̄− 1

2 ξ
TΓxξ, ξ ∈ Rn,

where x̄ and Γx are the expectation and covariance of X .

The Fourier transform of Gaussian density p(x) is also of this form.
The following results can be easily proved using charasteristic
functions. Let X ∼ N (x̄ , Γx) and X ∼ N (x̄ , Γx). Then

X and Y independent ⇒ X + Y ∼ N (x̄ + ȳ , Γx + Γy ).

AX ∼ N (Ax̄ ,AΓxA
T) for any matrix A.

Especially components of Gaussian random vectors are also Gaussian
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Example: drawing samples from Gaussian distributions
Problem: We want to draw samples from the Gaussian distribution
N (µ, Γ). How to do that?

Solution (with Matlab): Compute Cholesky factor L of Γ (LTL = Γ)
using chol in Matlab. Then draw samples for X ∼ N (0, I ) using randn
and compute Y = LTX + µ.

Practical note: Cholesky factor can only be computed for symmetric
positive-definite matrices. In some cases the covariance Γ can be
numerically singular (all eiqenvalues positive but some very small) and chol
might fail. In this case the covariance can be numerically stabilized by
adding a small number to the diagonal elements (i.e., compute the
cholesky for, say, Γ + 10−10I ). Another option is to use the eigenvalue
decomposition of Γ (eig) which works also with symmetric
positive-semidefinite matrices.
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Jointly Gaussian variables and conditioning

Assume that X and Y are jointly Gaussian which means that the

random vector Z =

[
X
Y

]
is Gaussian.

For example, if X and Y are Gaussian and independent, X and Y are
also jointly Gaussian (easy to see using charasteristic functions)
Note also that, if X and Y are jointly Gaussian, both X and Y have
to be also Gaussian (X = (I 0)Z , Y = (0 I )Z ).
Joint probability density function of X and Y is (if the covariance of Z
invertible)

p(x , y) = p(z) ∝ exp

{
−1

2

[
x − x̄
y − ȳ

]T [
Γx Γxy

Γyx Γy

]−1 [
x − x̄
y − ȳ

]}
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It is easy to see that, if X and Y are uncorrelated (Γxy = ΓT
yx = 0), X

and Y are independent.
Thus for Gaussian random variables: independent ⇔ uncorrelated.
(Holds also if covariances are singular)
Conditional distribution of jointly Gaussian random variables X and Y :
the conditional distribution of X given Y is N (x̂ , Γ̂x |y ) where the
conditional expectation x̂ and covariance Γ̂x |y are

x̂ = x̄ + ΓxyΓ−1
y (y − ȳ)

Γ̂x |y = Γx − ΓxyΓ−1
y Γyx

This results can be derived for continuous Gaussian random variables
by applying the block matrix inversion equation to p(x , y) as follows.

Janne Huttunen (UEF) Review to probability and random variables September 26, 2013 15 / 18



The block inversion formula gives[
Γx Γxy

Γyx Γy

]−1

=

[
Γ̂−1 −Γ̂−1ΓxyΓ−1

y

−Γ−1
y Γyx Γ̂−1 Σ

]

where Γ̂ = Γx − ΓxyΓ−1
y Γyx (Schur complement) and

Σ = Γ−1
y + Γ−1

y Γyx Γ̂−1ΓxyΓ−1
y .

Then [
x − x̄
y − ȳ

]T [
Γx Γxy

Γyx Γy

]−1 [
x − x̄
y − ȳ

]
= (x − x̄)TΓ̂−1(x − x̄)− (x − x̄)TΓ̂−1ΓxyΓ−1

y (y − ȳ)

−(y − ȳ)TΓ−1
y Γyx Γ̂−1(x − x̄) + (y − ȳ)TΣ(y − ȳ)

= (x − x̄)TΓ̂−1(x − x̄)− 2(x − x̄)TΓ̂−1ΓxyΓ−1
y (y − ȳ)

+(y − ȳ)TΣ(y − ȳ)

since the third term is the transpose of the second (Γ̂ and Γy are
symmetric) are therefore equal (the terms are scalars)
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We denote: p(x |y) ∝ g(x , y)⇔ p(x |y) = Cyg(x , y) for some
constant Cy which may depend on y . In probability context, such
constant is often called as a normalization constant:
Cy = (

∫
g(x , y)dx)−1 (remember that

∫
p(x |y)dx = 1).

The conditional density p(x |y) = p(x , y)/p(y) is:

p(x |y) ∝ exp
{
−

1
2

[
(x − x̄)TΓ̂−1(x − x̄)− 2(x − x̄)TΓ̂−1ΓxyΓ−1

y (y − ȳ)

+(y − ȳ)TΣ(y − ȳ)
]

+
1
2

(y − ȳ)TΣy (y − ȳ)

}
∝ exp

{
−

1
2

[
(x − x̄)TΓ̂−1(x − x̄)− 2(x − x̄)TΓ̂−1ΓxyΓ−1

y (y − ȳ)
]}

= exp
{
−

1
2

[
xTΓ̂−1x − 2xTΓ̂−1x̄ + x̄TΓ̂−1x̄

−2xTΓ̂−1ΓxyΓ−1
y (y − ȳ) + x̄TΓ̂−1ΓxyΓ−1

y (y − ȳ)
]}

∝ exp
{
−

1
2

[
xTΓ̂−1x − 2xTΓ̂−1x̄ − 2xTΓ̂−1ΓxyΓ−1

y (y − ȳ)
]}

where the terms that do not depend on x are included to normalization
constants. We only need terms which determine the form of p(x |y) as
a function of x , the normalization constant is not important.
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If p(x |y) = N (x̂ , Γ̂x |y ), we should be able to write

p(x |y) ∝ exp
{
−1
2

(x − x̂)T Γ̂−1
x |y (x − x̂)

}
∝ exp

{
−1
2

(
xTΓ̂−1

x |yx − 2xTΓ̂−1
x x̂ + x̂TΓ̂−1

x x̂
)}

∝ exp
{
−1
2

(
xTΓ̂−1

x |yx − 2xTΓ̂−1
x |y x̂

)}
We can actually see that p(x |y) can be written in this form when

Γ̂x |y = Γ̂ = Γx − ΓxyΓ−1
y Γyx

Γ̂−1
x |y x̂ = Γ̂−1x̄ + Γ̂−1ΓxyΓ−1

y (y − ȳ)

which gives the results.
Note that the above derivation is only valid if the covariance matrices
(Γx , Γy , the joint covariance Γz , Γ̂x |y ) are invertible. However the
result also holds if some or all of the covariances are singular (Γ−1

y in
the formula is replaced with the pseudo inverse if Γy is singular).
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