Review to probability and random variables

Janne Huttunen
UEF

September 26, 2013

We start with few results related matrix calculation.

Block matrix inversion

A, B, C and D are matrices such that A and D are non-singular square matrices. Then Gauss elimination gives

$$
\begin{aligned}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
A^{-1}+A^{-1} B \Gamma_{A}^{-1} C A^{-1} & -A^{-1} B \Gamma_{A}^{-1} \\
-\Gamma_{A}^{-1} C A^{-1} & \Gamma_{A}^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\Gamma_{D}^{-1} & -\Gamma_{D}^{-1} B D^{-1} \\
-D^{-1} C \Gamma_{D}^{-1} & D^{-1}+D^{-1} C \Gamma_{D}^{-1} B D^{-1}
\end{array}\right)
\end{aligned}
$$

where $\Gamma_{A}=D-C A^{-1} B$ and $\Gamma_{D}=A-B D^{-1} C$ (Schur complements).

- Special case:

$$
\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A^{-1} & 0 \\
0 & D^{-1}
\end{array}\right)
$$

Comparing the blocks in the block matrix inversion formula gives two important matrix identities:

Matrix inversion lemma

$$
\left(A-B D^{-1} C\right)^{-1}=A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1}
$$

This result is also known as Sherman-Morrison-Woodbury formula or Woodbury formula.

Matrix inversion identity

$$
A^{-1} B\left(D-C A^{-1} B\right)^{-1}=\left(A-B D^{-1} C\right)^{-1} B D^{-1}
$$

Short review to probability theory and random variables

- A random variable X is a function $X: \Omega \mapsto \mathbb{R}$ where Ω is a set called sample space. The elements $\omega \in \Omega$ are called samples.
- The value $X(\omega)$ for fixed ω is called as a realization of X.
- (Cumulative) distribution of X is a function $F: \mathbb{R} \mapsto[0,1]$ such that

$$
F(y)=\mathbb{P}(X \leq y), \quad y \in \mathbb{R}
$$

where \mathbb{P} denotes probability: $\mathbb{P}(X \leq y)$ is probability for the event that the value of X is less or equal to y.

- The variance of X is

$$
\sigma_{X}^{2}=\operatorname{var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2} \geq 0
$$

- The standard deviations of X is $\sigma_{X}=\sqrt{\operatorname{var}(X)}$
- A random variable X is called a continuos random variable if there is a function $p: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
F(y)=\int_{-\infty}^{y} p(x) \mathrm{d} x
$$

The function p is called as the probability density of X.

- Note: $F(\infty)=\int_{-\infty}^{\infty} p(x) \mathrm{d} x=1$.
- The expectations is $\mathbb{E}[X]=\int_{-\infty}^{\infty} x p(x) \mathrm{d} x$.
- More generally

$$
\mathbb{E}[f(X)]=\int_{-\infty}^{\infty} f(x) p(x) \mathrm{d} x
$$

for functions f for which the integral is defined.

- During the lectures, we usually assume that random variables are continuous (especially if we are using the probability density p)

Multidimensional random variables

- A n-dimensional random variable (or random vector) is a function $X: \Omega \mapsto \mathbb{R}^{n}$.
- Can also be tough as a vector of random variables

$$
X=\left(X_{1}, \ldots, X_{n}\right)^{\mathrm{T}}
$$

where X_{1}, \ldots, X_{n} are random variables.

- The expectation of $X: \mathbb{E}[X]=\left(\mathbb{E}\left[X_{1}\right], \ldots, \mathbb{E}\left[X_{n}\right]\right)^{\mathrm{T}}$
- The covariance of X :

$$
\begin{aligned}
& \operatorname{cov} X=\mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{\mathrm{T}}\right] \\
& =\left(\begin{array}{ccc}
\mathbb{E}\left[\left(X_{1}-\mathbb{E}\left[X_{1}\right]\right)\left(X_{1}-\mathbb{E}\left[X_{1}\right]\right)\right] & \cdots & \mathbb{E}\left[\left(X_{1}-\mathbb{E}\left[X_{1}\right]\right)\left(X_{n}-\mathbb{E}\left[X_{n}\right]\right)\right] \\
\vdots & \ddots & \vdots \\
\mathbb{E}\left[\left(X_{n}-\mathbb{E}\left[X_{n}\right]\right)\left(X_{1}-\mathbb{E}\left[X_{1}\right]\right)\right] & \cdots & \mathbb{E}\left[\left(X_{n}-\mathbb{E}\left[X_{n}\right]\right)\left(X_{n}-\mathbb{E}\left[X_{n}\right]\right)\right]
\end{array}\right)
\end{aligned}
$$

- A symmetric matrix K is called positive definite if $x^{\mathrm{T}} K x>0$ for all vectors $x \neq 0$ (or equivalently, all eigenvalues are positive).
- A symmetric matrix K is called positive semi-definite if $x^{\mathrm{T}} K x \geq 0$ for all x (or all eigenvalues are non-negative).
- Positive semi-definite matrix is also positive definite, if it is not singular (i.e. $\operatorname{det}(K) \neq 0$ or $\exists K^{-1}$).
- Covariance matrices are symmetric and positive-semidefinite:

$$
\begin{array}{rl}
\operatorname{cov}(X)^{\mathrm{T}} & =\mathbb{E}\left[\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{\mathrm{T}}\right]^{\mathrm{T}}\right] \\
& =\mathbb{E}\left[\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{\mathrm{T}}\right]\right]=\operatorname{cov}(X) \\
x^{\mathrm{T}} \operatorname{cov}(X) x & =\mathbb{E}\left[x^{\mathrm{T}}(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{\mathrm{T}} x\right] \\
& =\mathbb{E}[\underbrace{}_{\in \mathbb{R}}\left[(X-\mathbb{E}[X])^{\mathrm{T}} x\right]
\end{array} \underbrace{(X-\mathbb{E}[X])^{\mathrm{T}} x}_{\in \mathbb{R}}]=\mathbb{E}\left[\left|(X-\mathbb{E}[X])^{\mathrm{T}} x\right|^{2}\right] \geq 0)
$$

- Cumulative distribution of a random vector X is $F: \mathbb{R}^{n} \rightarrow[0,1]$ such that

$$
F(y)=\mathbb{P}\left(X_{1} \leq y_{1}, \ldots, X_{n} \leq y_{n}\right), \quad y \in \mathbb{R}^{n}
$$

- Continuous random vectors: there is a probability density function $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
F(y)=\int_{-\infty}^{y_{1}} \cdots \int_{-\infty}^{y_{n}} p\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

- Then

$$
\mathbb{E}[f(X)]=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x) p\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

E.g.

$$
\mathbb{E}\left[X_{i}\right]=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x_{i} p\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n}
$$

- Let X and Y be random variables. Then the vector (X, Y) forms a new random vector.
- The joint probability density of X and Y is the probability density function $p(x, y)$ of (X, Y)
- The covariance of (X, Y) is

$$
\left(\begin{array}{cc}
\Gamma_{x} & \Gamma_{x y} \\
\Gamma_{y x} & \Gamma_{y}
\end{array}\right)
$$

where Γ_{x} and Γ_{y} are covariances of X and Y and $\Gamma_{x y}$ and $\Gamma_{y x}$ are the cross-covariances:

$$
\begin{aligned}
\Gamma_{x y} & =\mathbb{E}\left[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])^{\mathrm{T}}\right] \\
\Gamma_{y x} & =\mathbb{E}\left[(Y-\mathbb{E}[Y])(X-\mathbb{E}[X])^{\mathrm{T}}\right]=\Gamma_{x y}^{\mathrm{T}}
\end{aligned}
$$

- If X and Y independent, X and Y are uncorrelated ($\Gamma_{x y}=0$, $\Gamma_{y x}=0$). The opposite is not always true.
- Marginal densities:

$$
p(x)=\int_{-\infty}^{\infty} p(x, y) \mathrm{d} y \quad \text { and } \quad p(y)=\int_{-\infty}^{\infty} p(x, y) \mathrm{d} x
$$

- The conditional probability density for X given Y :

$$
p(x \mid y)=\frac{p(x, y)}{p(y)}
$$

- If X and Y are independent: $p(x, y)=p(x) p(y)$. Also $p(x \mid y)=p(x)$.
- Identity $p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)$ gives important results:

Bayes rule

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}
$$

Normal distributions

A random variable X is called normal or Gaussian if the probability density is of the form

$$
p(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}\left(\Gamma_{x}\right)}} \exp \left\{-\frac{1}{2}(x-\bar{x})^{\mathrm{T}} \Gamma_{x}^{-1}(x-\bar{x})\right\}
$$

where \bar{x} and Γ_{x} are the expectation and covariance of X. Normal distributions are denoted as $\mathcal{N}\left(\bar{x}, \Gamma_{x}\right)$.

- Note that normal distributions are completely determined by its expectation and covariance.
- Thus a common approach is to check that distribution is Gaussian and then calculate the expectation and covariance
- The definition can be extended also for singular covariances Γ_{x} using characteristic functions $\phi(\xi)=\mathbb{E}\left[e^{i \xi^{\mathrm{T}} X}\right], \xi \in \mathbb{R}^{n}$ where $i=\sqrt{-1}$.
- If X is continuos, $\phi(\xi)=\int e^{i \xi^{\mathrm{T}} x} p(x) \mathrm{d} x$ (the Fourier transform of p).

Normal distributions (extended definition)

A random variable X is normal if its characteristic function ϕ is of the form

$$
\phi(\xi)=e^{i \xi^{\mathrm{T}} \bar{x}-\frac{1}{2} \xi^{\mathrm{T}} \Gamma_{x} \xi}, \quad \xi \in \mathbb{R}^{n}
$$

where \bar{x} and Γ_{X} are the expectation and covariance of X.

- The Fourier transform of Gaussian density $p(x)$ is also of this form.
- The following results can be easily proved using charasteristic functions. Let $X \sim \mathcal{N}\left(\bar{x}, \Gamma_{x}\right)$ and $X \sim \mathcal{N}\left(\bar{x}, \Gamma_{x}\right)$. Then

$$
\begin{aligned}
& X \text { and } Y \text { independent } \Rightarrow X+Y \sim \mathcal{N}\left(\bar{x}+\bar{y}, \Gamma_{x}+\Gamma_{y}\right) . \\
& A X \sim \mathcal{N}\left(A \bar{x}, A \Gamma_{x} A^{\mathrm{T}}\right) \text { for any matrix } A .
\end{aligned}
$$

- Especially components of Gaussian random vectors are also Gaussian

Example: drawing samples from Gaussian distributions

Problem: We want to draw samples from the Gaussian distribution $\mathcal{N}(\mu, \Gamma)$. How to do that?

Solution (with Matlab): Compute Cholesky factor L of $\Gamma\left(L^{\mathrm{T}} L=\Gamma\right)$ using chol in Matlab. Then draw samples for $X \sim \mathcal{N}(0, I)$ using randn and compute $Y=L^{\mathrm{T}} X+\mu$.

Practical note: Cholesky factor can only be computed for symmetric positive-definite matrices. In some cases the covariance Γ can be numerically singular (all eiqenvalues positive but some very small) and chol might fail. In this case the covariance can be numerically stabilized by adding a small number to the diagonal elements (i.e., compute the cholesky for, say, $\Gamma+10^{-10} /$). Another option is to use the eigenvalue decomposition of Γ (eig) which works also with symmetric positive-semidefinite matrices.

Jointly Gaussian variables and conditioning

- Assume that X and Y are jointly Gaussian which means that the random vector $Z=\left[\begin{array}{l}X \\ Y\end{array}\right]$ is Gaussian.
- For example, if X and Y are Gaussian and independent, X and Y are also jointly Gaussian (easy to see using charasteristic functions)
- Note also that, if X and Y are jointly Gaussian, both X and Y have to be also Gaussian $(X=(I 0) Z, Y=(0 I) Z)$.
- Joint probability density function of X and Y is (if the covariance of Z invertible)

$$
p(x, y)=p(z) \propto \exp \left\{-\frac{1}{2}\left[\begin{array}{l}
x-\bar{x} \\
y-\bar{y}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{cc}
\Gamma_{x} & \Gamma_{x y} \\
\Gamma_{y x} & \Gamma_{y}
\end{array}\right]^{-1}\left[\begin{array}{l}
x-\bar{x} \\
y-\bar{y}
\end{array}\right]\right\}
$$

- It is easy to see that, if X and Y are uncorrelated $\left(\Gamma_{x y}=\Gamma_{y x}^{\mathrm{T}}=0\right), X$ and Y are independent.
Thus for Gaussian random variables: independent \Leftrightarrow uncorrelated. (Holds also if covariances are singular)
- Conditional distribution of jointly Gaussian random variables X and Y : the conditional distribution of X given Y is $\mathcal{N}\left(\hat{x}, \hat{\Gamma}_{x \mid y}\right)$ where the conditional expectation \hat{x} and covariance $\hat{\Gamma}_{x \mid y}$ are

$$
\begin{aligned}
\hat{x} & =\bar{x}+\Gamma_{x y} \Gamma_{y}^{-1}(y-\bar{y}) \\
\hat{\Gamma}_{x \mid y} & =\Gamma_{x}-\Gamma_{x y} \Gamma_{y}^{-1} \Gamma_{y x}
\end{aligned}
$$

- This results can be derived for continuous Gaussian random variables by applying the block matrix inversion equation to $p(x, y)$ as follows.
- The block inversion formula gives

$$
\left[\begin{array}{cc}
\Gamma_{x} & \Gamma_{x y} \\
\Gamma_{y x} & \Gamma_{y}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\hat{\Gamma}^{-1} & -\hat{\Gamma}^{-1} \Gamma_{x y} \Gamma_{y}^{-1} \\
-\Gamma_{y}^{-1} \Gamma_{y x} \hat{\Gamma}^{-1} & \Sigma
\end{array}\right]
$$

where $\hat{\Gamma}=\Gamma_{x}-\Gamma_{x y} \Gamma_{y}^{-1} \Gamma_{y x}$ (Schur complement) and $\Sigma=\Gamma_{y}^{-1}+\Gamma_{y}^{-1} \Gamma_{y x} \hat{\Gamma}^{-1} \Gamma_{x y} \Gamma_{y}^{-1}$.

- Then

$$
\begin{aligned}
& {\left[\begin{array}{l}
x-\bar{x} \\
y-\bar{y}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{cc}
\Gamma_{x} & \Gamma_{x y} \\
\Gamma_{y x} & \Gamma_{y}
\end{array}\right]^{-1}\left[\begin{array}{l}
x-\bar{x} \\
y-\bar{y}
\end{array}\right]} \\
& =(x-\bar{x})^{\mathrm{T}} \hat{\Gamma}^{-1}(x-\bar{x})-(x-\bar{x})^{\mathrm{T}} \hat{\Gamma}^{-1} \Gamma_{x y} \Gamma_{y}^{-1}(y-\bar{y}) \\
& \quad-(y-\bar{y})^{\mathrm{T}} \Gamma_{y}^{-1} \Gamma_{y x} \hat{\Gamma}^{-1}(x-\bar{x})+(y-\bar{y})^{\mathrm{T}} \Sigma(y-\bar{y}) \\
& =(x-\bar{x})^{\mathrm{T}} \hat{\Gamma}^{-1}(x-\bar{x})-2(x-\bar{x})^{\mathrm{T}} \hat{\Gamma}^{-1} \Gamma_{x y} \Gamma_{y}^{-1}(y-\bar{y}) \\
& \quad+(y-\bar{y})^{\mathrm{T}} \Sigma(y-\bar{y})
\end{aligned}
$$

since the third term is the transpose of the second ($\hat{\Gamma}$ and Γ_{y} are symmetric) are therefore equal (the terms are scalars)

- We denote: $p(x \mid y) \propto g(x, y) \Leftrightarrow p(x \mid y)=C_{y} g(x, y)$ for some constant C_{y} which may depend on y. In probability context, such constant is often called as a normalization constant:

$$
\left.C_{y}=\left(\int g(x, y) \mathrm{d} x\right)^{-1} \text { (remember that } \int p(x \mid y) \mathrm{d} x=1\right)
$$

- The conditional density $p(x \mid y)=p(x, y) / p(y)$ is:

$$
\begin{aligned}
& p(x \mid y) \propto \exp \{--\frac{1}{2}\left[(x-\bar{x})^{\mathrm{T}} \hat{\Gamma}^{-1}(x-\bar{x})-2(x-\bar{x})^{\mathrm{T}} \hat{\Gamma}^{-1} \Gamma_{x y} \Gamma_{y}^{-1}(y-\bar{y})\right. \\
&\left.\left.+(y-\bar{y})^{\mathrm{T}} \Sigma(y-\bar{y})\right]+\frac{1}{2}(y-\bar{y})^{\mathrm{T}} \Sigma_{y}(y-\bar{y})\right\} \\
& \propto \exp \{-\left.-\frac{1}{2}\left[(x-\bar{x})^{\mathrm{T}} \hat{\Gamma}^{-1}(x-\bar{x})-2(x-\bar{x})^{\mathrm{T}} \hat{\Gamma}^{-1} \Gamma_{x y} \Gamma_{y}^{-1}(y-\bar{y})\right]\right\} \\
&=\exp \{--\frac{1}{2}\left[x^{\mathrm{T}} \hat{\Gamma}^{-1} x-2 x^{\mathrm{T}} \hat{\Gamma}^{-1} \bar{x}+\bar{x}^{\mathrm{T}} \hat{\Gamma}^{-1} \bar{x}\right. \\
&\left.\left.-2 x^{\mathrm{T}} \hat{\Gamma}^{-1} \Gamma_{x y} \Gamma_{y}^{-1}(y-\bar{y})+\bar{x}^{\mathrm{T}} \hat{\Gamma}^{-1} \Gamma_{x y} \Gamma_{y}^{-1}(y-\bar{y})\right]\right\} \\
& \propto \exp \left\{-\frac{1}{2}\left[x^{\mathrm{T}} \hat{\Gamma}^{-1} x-2 x^{\mathrm{T}} \hat{\Gamma}^{-1} \bar{x}-2 x^{\mathrm{T}} \hat{\Gamma}^{-1} \Gamma_{x y} \Gamma_{y}^{-1}(y-\bar{y})\right]\right\}
\end{aligned}
$$

where the terms that do not depend on x are included to normalization constants. We only need terms which determine the form of $p(x \mid y)$ as a function of x, the normalization constant is not important.

- If $p(x \mid y)=\mathcal{N}\left(\hat{x}, \hat{\Gamma}_{x \mid y}\right)$, we should be able to write

$$
\begin{aligned}
p(x \mid y) & \propto \exp \left\{-\frac{1}{2}(x-\hat{x})^{\mathrm{T}} \hat{\Gamma}_{x \mid y}^{-1}(x-\hat{x})\right\} \\
& \propto \exp \left\{-\frac{1}{2}\left(x^{\mathrm{T}} \hat{\Gamma}_{x \mid y}^{-1} x-2 x^{\mathrm{T}} \hat{\Gamma}_{x}^{-1} \hat{x}+\hat{x}^{\mathrm{T}} \hat{\Gamma}_{x}^{-1} \hat{x}\right)\right\} \\
& \propto \exp \left\{-\frac{1}{2}\left(x^{\mathrm{T}} \hat{\Gamma}_{x \mid y}^{-1} x-2 x^{\mathrm{T}} \hat{\Gamma}_{x \mid y}^{-1} \hat{x}\right)\right\}
\end{aligned}
$$

- We can actually see that $p(x \mid y)$ can be written in this form when

$$
\begin{aligned}
\hat{\Gamma}_{x \mid y} & =\hat{\Gamma}=\Gamma_{x}-\Gamma_{x y} \Gamma_{y}^{-1} \Gamma_{y x} \\
\hat{\Gamma}_{x \mid y}^{-1} \hat{x} & =\hat{\Gamma}^{-1} \bar{x}+\hat{\Gamma}^{-1} \Gamma_{x y} \Gamma_{y}^{-1}(y-\bar{y})
\end{aligned}
$$

which gives the results.

- Note that the above derivation is only valid if the covariance matrices $\left(\Gamma_{x}, \Gamma_{y}\right.$, the joint covariance $\left.\Gamma_{z}, \hat{\Gamma}_{x \mid y}\right)$ are invertible. However the result also holds if some or all of the covariances are singular (Γ_{y}^{-1} in the formula is replaced with the pseudo inverse if Γ_{y} is singular).

