Chapter 2

Naive Reconstructions and
Inverse Crimes

This book is about developing computational solution methods for real-life
inverse problems. The design of reconstruction algorithms is best done by
first testing the code extensively with simulated data because every new
aspect of the code can be systematically tested. Working directly with
measured data may lead to very hard debugging problems as the source of
difficulties can be hard to track.

What happens if proper simulation of errors is neglected? For example,
using the same computational grid for the data simulation and reconstruc-
tion sometimes results in perfect reconstructions from noise-free data. Such
a situation is not realistic and is referred to as an inverse crime. Excellent
inversion results may be obtained, but these are not representative of any
realistic inverse problem, since noise is present in any experimental setting.
Such studies are inconclusive at best since robustness against modeling and
measurement errors is not tested.

In this chapter, we will introduce these concepts in the context of the
three guiding examples in Part I: deconvolution, the backward heat equation,
and x-ray tomography.

2.1 Convolution

Linear convolution is a useful process for modeling a variety of practical
measurements. Deconvolution, the corresponding inverse problem, is related
to many engineering problems such as removing unwanted echoes from sound
recordings or sharpening a misfocused photograph.
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One-dimensional deconvolution will serve as a basic example throughout
Part I of the book. Two-dimensional deconvolution is a project topic in
Section 10.

2.1.1 Continuum model for one-dimensional convolution

We build a computational model for one-dimensional convolution with pe-
riodic boundary conditions. We consider 1-periodic functions f : R — R
satisfying f(x) = f(z + n) with any integer n € Z. Essentially the func-
tion f is defined on an interval of length 1 such as [0,1] or [, ] with the
endpoints identified; another way of thinking about this is to consider f(z)
defined on a circle with radius (27)~! and x being the arc length variable.

The reason for considering periodic functions is that we can avoid some
technicalities related to boundary conditions that would obscure the main
message about ill-posedness. Also, the Fourier transform and the wavelet
transform are easily defined and implemented in the periodic setting.

The continuum measurement model concerns a 1-periodic signal f : R —
R blurred by a 1l-periodic point spread function (PSF) 1. Other common
names for the point spread function include device function, impulse re-
sponse, blurring kernel, convolution kernel and transfer function.

Let us first construct the PSF using a building block g defined in the
interval [—a,a] C R with some constant 0 < a < 1/2:

Yo(z) = Co(z 4 a)*(z — a)?, for —a <z <a, (2.1)

where the constant Cy := ([, (z+a)*(z — a)?*dz) ™! is chosen to enforce the
following normalization:

’ Yo(x)dr = 1. (2.2)

The periodic point spread function is defined by copying vo(z) to every
interval [n — a,n + a] with n € Z and setting ¥ (z) to zero outside those
intervals. The resulting ¢ is a non-negative and even function:

P(xz) >0 and ¢(x)=¢(—z) forallzeR. (2.3)

See Figure 2.1 for a plot of the point spread function with a = 0.04.

We remark that instead of (2.2) one often requires [* vo(z)*dz = 1.
However, we prefer (2.2) since then constant functions remain unchanged in
convolution with ; this will be convenient below when we compare plots of
reconstructions to the plot of the true signal by showing them in the same
figure.
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Figure 2.1: Point spread function according to (2.4) with a = 0.04 for one-
dimensional convolution. Left: the continuously differentiable building block
1o(x) used for constructing the periodic PSF. Right: the periodic PSF 1 (z).
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Figure 2.2: Effect of convolution on a piecewise continuous function. Left:
target function f(x). Right: the function (¢ * f)(x).

Definition 2.1.1 The continuum model of convolution, or blurring, is given
by the following integral:

a

W= f)@)= [ ¥(@@)f(z—a’)da". (2.4)

—a

Note that formula (2.4) is not of the form (1.1) since the left hand side
is not a k-dimensional vector. However, suppose the function f is defined
on an interval [b,b + 1], and assume that we have a device that measures
the values of the convolution function (¢ % f)(z) at a collection of k equally
spaced points T1 = b,To = b+ %,5@3 =b-+ %,...,:Ek =b+ % and define

m = [(§* f)(@1), (% * ) (@2),.., (@ * [)(@)]" € R". (2.5)

Then Af = m is of the form (1.1).
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2.1.2 Discrete convolution model

Next we need to discretize the continuum model to arrive at a finite-dimensional
measurement model of the form (1.3). Define

) — 1
xj:b+]T for j=1,2...,n; (2.6)

then the l-periodic real-valued function f(z) is represented by a vector f
containing values at the grid points:

f=[f,fo,.... 5] = [f(x1), f(x2),..., fzn)]! € R™ (2.7)

Furthermore, denote Az 1=z — 21 = 1/n.
We can approximate the integral appearing in (2.4) by numerical quadra-
ture. For any reasonably well-behaved function g : [b,b+ 1] — R we have

b+1 n
/b g(z)dr ~ Ax Z g(xj), (2.8)

Jj=1

the approximation becoming better as n increases.

For convenience, let us take k& = n and measure the convolution at the
same points (2.6) as where the unknown function f is sampled. This is not
necessary in general, but it will lead to a square-shaped matrix A, making
it easy to illustrate naive reconstructions and inverse crimes.

Let us construct an n x n matrix A so that Af € RF approximates Af
defined by (2.4). We define a discrete PSF denoted by

P=[P—vsP-vi1s- s P-1,P0s Pl Pu1, )
as follows. Recall that ¥y(x) = 0 for |z| > a > 0. Take v > 0 to be the
smallest integer satisfying the inequality (v + 1)Az > a and set

p; = Yo(jAzx) for j=-v,..., v

For example, with ¢ = 0.04 as in Figure 2.1 and n = 64, we get v = 2.
By (2.8) the normalization condition (2.2) almost holds: Az3_Y_ p; =~ 1.
However, in practice it is a good idea to normalize the discrete PSF explicitly
by the formula
Y -1
p= <A:v > pj> p; (2.9)

j=v
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then it follows that ,
Az > pj=1 (2.10)

j=—v

Now

/a V(@) f(xj —2')dd =~ Az Z (@) f(zj — x0)

—a l=—v
14
~ Az Z pefj_s.
l=—v

Hence discrete convolution is defined by the formula

(pxf);= > pej_e, (2.11)
(=—v

where f;_y is defined using periodic boundary conditions for the cases j—/ <
1 and j — ¢ > n. Then

Az(p xf) = Af, (2.12)
and we define the measurement vector m = [my, ... my|’ by
m; = Az(p xf); +¢;. (2.13)

We would like to write formula (2.13) using a matrix A so that we would
arrive at the desired model (1.3). To this end, set

m; aip 0 Qi f; €1
= |+
my, Akl Qkn £, £k
The answer is to build a circulant matrix having the elements of p appearing
systematically on every row of A.
Let us illustrate the structure of the convolution matrix A by an example

in the case n = 64. As observed above, if a = 0.04 then v = 2, and the PSF
takes the foom p=[p_2 p_1 po p1 p2]’. According to (2.11) we have

(pxf)1 = pofi +p_i1fo+p_aofs + pof—1 + pif,,

(p*f)2 pifi + pofo + p_1f3 + p_ofs + paof,,,
(pxf)s = pofi + pifo + pofs + p_1fs + p_ofs,

(P * f)n = pflfl + P72f2 + p2fn72 + plfnfl + pOfn-
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Consequently the matrix A looks like this:

Po P-1 P2 0 0 0 P2 P1
Pi Po P-1 p-2 0 0 0 P2
P2 Pt Po P-1 P2 O 0 0

0 P2 P1 Po P-1 P2 0 0

A=Az | L (2.14)
0 0 P2 P11 Po P-1 P2
p2 0 0 P2 DP1 Po P-1
| P-1 P2 0 0 P2 P11 Po |

note the systematic band-diagonal structure, which characterizes A as a
circulant matrix. Linear systems involving circulant matrices can be quickly
solved using Fast Fourier Transforms, a topic we will return to later.

Returning to the general case of p defined by (2.9), the approximation
formula (2.12) can be written in the form

Af ~ Af. (2.15)

Figure 2.3 shows data computed by the discrete model Af and compares the
result to the continuous data (¢ * f)(z) defined by (2.4).

Now let’s add a little noise to the data. For example, we might take
k = 64 = n and construct the measurement noise in a probabilistic manner
by taking a realization of a random vector with 64 independently distributed
Gaussian elements having standard deviation o = 0.01 - max |f(z)|. This
corresponds to a relative noise level of 1%.

2.1.3 Nailve deconvolution and inverse crimes

We illustrate numerically the failure of the following naive reconstruction
attempt:
fr A" m~ ATV (Af +6) =+ A1 (e). (2.16)

In the case of no added noise (¢ = 0) we use the data shown in the left plot of
Figure 2.4 and get the left plot in Figure 2.5. The naive reconstruction seems
perfect! However, there is a catch. This apparently accurate reconstruction
is not to be trusted; it is an example of an inverse crime. We will show how
to avoid inverse crime in Section 2.1.4.

If we apply naive reconstruction (2.16) to the slightly noisy data shown
in the right plot of Figure 2.4, we get the result shown in the right plot
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Figure 2.3: Illustration of the approximation Af ~ Af of formula (2.15) for
different choices of k = n. The actual function (¢ * f)(x) defined by (2.4)

is shown with a thin solid line, and the data points are indicated as dots.
Note how the discrete approximation becomes better as the discretization

is refined.
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Figure 2.4: Tllustration of simulated measurement noise. The actual function
(= f)(x) defined by (2.4) is shown with a thin solid line, and the data points
are indicated as dots. Left: non-noisy discrete data Af with n = 64 = k.
Right: the same data corrupted with 1% white noise.
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Figure 2.5: Two naive deconvolutions by applying the inverse matrix A~ to
data. The original target function f(z) is shown with a thin solid line, and
the reconstruction is shown as dots. Left: naive reconstruction (involving
inverse crime) from the non-noisy discrete data Af with n = k = 64 shown
in the left plot in Figure 2.4. Right: naive reconstruction from the noisy
data shown in the right plot of Figure 2.4.

in Figure 2.5. It is completely useless. This example shows how sensitive
inverse problems are to the smallest errors in the measurement. We need
to introduce reqularization to overcome extreme sensitivity to measurement
errors.

2.1.4 Naive reconstruction without inverse crime

In the case of the deconvolution problem, we first simulate the measurements
by convolving our known function f with a known discretized point spread
function. In reality, when a blurred signal or image is encountered, the point
spread function that “caused” the blurring is both unknown and can unlikely
be expressed in simple terms. Thus, using the same point spread function for
simulating a blurred signal and deconvolving the signal constitutes a serious
inverse crime. Using the same PSF and the same discretization mesh is an
inverse felony!

We show one simple way to avoid inverse crime. We use a modified
point spread function by taking a = 0.041 in (2.1) when simulating data.
We compute the function (¢ * f)(z) defined in (2.4) approximately at 1000
uniformly spaced points in the interval [0, 1] using trapezoidal rule with 400
quadrature points for the evaluation of the integral. Finally, we interpolate
the values of ¥ x f at the 64 grid points using splines.

Now the data has been simulated completely differently than using the
64 x 64 model matrix A as was (criminally) done in Section 2.1.3.

We apply naive inversion (2.16) to the crime-free data and show the re-
sults in Figure 2.6. Compare the left plots in Figures 2.5 and 2.6. Proper
simulation of crime-free data reveals the ill-posedness of the deconvolution
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Figure 2.6: Two naive deconvolutions by applying the inverse matrix A~! to
data generated avoiding inverse crime. The original target function f(x) is
shown with a thin solid line, and the reconstruction is shown as dots. Left:
naive reconstruction from non-noisy discrete data with n = k = 64. Right:
naive reconstruction from noisy data. Compare to Figure 2.5.

problem: the slightest perturbations in the data are amplified in naive re-
construction using (2.16).

Exercise 2.1.1 Determine whether the PSF ¢ is a C*°(R) function.

Exercise 2.1.2 What is the effect of increasing the support of g on v?
Use the MATLAB programs DCcontdatacomp.m and DCcontdataplot.m to
study the effect of increasing a on the convolved function. What do you
observe?

Exercise 2.1.3 Plot a constant function of height 2 on [0, 1] before and after
convolution with . Use the MATLAB program DC2discretedatacomp.m
to add noise the the convolved function and DC2naiveplot.m to compute a
native reconstruction. Plot your results.

2.2 Heat propagation

A classic ill-posed problem is that of determining the temperature distri-
bution in a region from knowledge of the temperature distribution at the
present time. This problem is known as the backward heat equation. We
will begin with a discussion of the governing PDE’s and their origins and
then move to a simple discrete model.

2.2.1 Diffusion processes

The heat equation is the prototypical equation for modeling processes gov-
erned by pure diffusion. Following a probabalistic description as in, for



