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Evolution in heterogeneous environments - II

This project is based on the Lotka-Volterra competition model discussed in the
lectures. Less importantly, the population dynamics are here in discrete time. More
importantly, we assume two habitat patches with dispersal inbetween, and the
parameters of the Lotka-Volterra model differ between the habitats to explore the
effects of habitat heterogeneity.

Consider first a habitat in isolation (no dispersal). A rare mutant with trait y grows in
the equilibrium population of strategy x according to the discrete Lotka-Volterra
model
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where M is the density of mutants and N is the density of residents,  is the intrinsic
growth rate, K is the trait-dependent carrying capacity, and ( )y x  is the
competition coefficient between strategies y and x. The resident equilibrium density
N̂  is obtained from the resident dynamics
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Throughout we assume that 0 2  such that the population exhibits a stable
equilibrium. The competition coefficient is a Gaussian function of the difference in
the trait values,
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We assume that the carrying capacity functions reach their maxima at two different
traits in the two habitats, corresponding to different locally adapted trait values.
Without loss of generality, these two trait values will be  and , respectively. The
larger the value of  is, the more the two habitats differ from one another. For the
carrying capacity functions, we use the Gaussian form
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Dispersal to the alternative habitat occurs with probability  (which is at most 1/2).
With dispersal, the mutant's dynamics are given by
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where 1M  and 2M  denote the densities after competition respectively in habitat 1 and
2, and are calculated as in equation (1) but with habitat-specific values of  and K(y).
Notice that the population is structured by the habitat. To calculate the invasion
fitness of the mutant, we rewrite equations (5) into matrix form and substitute 1M  and

2M  explicitly:
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Elements of the matrix in the brackets are constant. The mutant population thus grows
exponentially in the equilibrium population of the resident, and the annual growth rate
of the mutant is given by the dominant eigenvalue of the matrix.

Assume first that the two habitats differ only in the position of the carrying capacity
function, i.e., that 1 2  and 1 2  (by scaling the population densities,

1can be taken without loss of generality). Find examples for different types of
singular strategies illustrate them with PIPs. Construct an isocline plot and explore the
coevolution of two strategies in an example with evolutionary branching.

Next, investigate how the number and stability of singularities change as a function of
dispersal and as a function of  (bifurcation analysis). Interestingly, increasing
does not necessarily exert disruptive selection: If possible, find an example where
there is evolutionary branching for small  but no branching for large . Finally,
extend the analysis for the asymmetric case 1 2  (concentrate of the number and
stability of singularities for different levels of dispersal).


