
ADAPTIVE DYNAMICS
EXERCISE 6 – 7

Exercise 6:
We study the evolution of the predator’s attack rate x in the following prey-
predator model:
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(a) Interpret the model in terms of individual-level behaviour.

(b) Study the prey dynamics if there are no predators around. Note that the prey
exhibits an Allee-effect, i.e., a negative growth rate when the population density
is low. Why is this (in biological terms)?

(c) Study the prey-predator dynamics with only a single predator type present in
order to convince yourself of the possibility of cycles. What do the dynamics look
like for a very high predator attack rate x?

(d) Rewrite the model in a form with an explicit environmental feedback loop.
Give the invasion fitness sE(y) and determine the essential dimension of the envi-
ronment.

(e) Show that evolution of the predator’s attack rate x inevitably leads to the
catastrophic extinction of both the prey and the predator.

Exercise 7:
Modify the prey-predator dynamics by introducing a Holling type-II functional
response:
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(a) Rewrite the model in a form with an explicit environmental feedback loop.
Give the invasion fitness sE(y) and show that now the environment is essentially
infinite-dimensional.
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(b) Use the principle of selective neutrality of residents as well as a monotony
argument to show that coexistence of different predator types is not possible (i.e.,
in spite of the environment being essentially infinitely-dimensional).

(c) Calculate the selection gradient and use this to argue that evolution of the
predator’s attack rate x again leads to the catastrophic extinction of both the
prey and the predator, i.e., at least if mutation steps are sufficiently small.


