NB: The second course exam is planned for Thursday, May 7th, at 13:00-15:00 with Monday, May 4th, as an alternative date. Please send an e-mail to the lecturer as soon as possible if you wish to take the exam but cannot come at the above times. (Let me then also know about which dates on the same week, 4.-8.5., would be possible for you.)

Exercise 1

Prove Theorem 13.17 in the textbook:

When X is a topological space and $a \in X$, let $C(a, X)$ denote the a-component of X, defined by

$$
C(a, X):=\bigcup\{A \subset X \mid a \in A \text { and } A \text { is connected }\}
$$

Prove the following statements using only results preceding Section 13.16:
(a) $a \in C(a, X)$ for all $a \in X$.
(b) Every component of X is connected.
(c) The collection of the components of X forms a partition of X. (In other words, show that every $a \in X$ belongs to exactly one component of X.)
(d) If $A \subset X$ is connected and nonempty, it is contained in exactly one component of X.
(e) If $f: X \rightarrow Y$ is continuous, f maps any component of X into some component of Y.
(f) If $f: X \approx Y$, the images of the components of X are in one-to-one correspondence with the components of Y.

Exercise 2

Prove Theorem 15.3 in the textbook:
Suppose X is a topological space and endow $A \subset X$ with the relative topology inherited from X. Show that A is compact if and only if every X-open cover of A has a finite subcover.

Reminder: An X-open cover of A is a collection of open subsets $U_{j} \subset X, j \in J$, such that $A \subset \bigcup_{j \in J} U_{j}$.

Exercise 3

Suppose X is a locally connected and separable topological space. Show that X has only countably many components.

Exercise 4

Prove that the projective space P^{n}, with $n \geq 1$, is path connected.
Reminder: The projective space was defined in Example 9.5 by identifying the "opposite points" of a sphere.

Exercise 5

Consider some $n \geq 1$ and assume that the subset $D \subset \mathbb{R}^{n}$ contains the origin $\mathbf{0}$ and is open, bounded and convex. Explain why $\mathbf{0} \notin \partial D$. Therefore, we may define a function $f: \partial D \rightarrow S^{n-1}$ by the formula $f(\mathbf{x}):=\mathbf{x} /|\mathbf{x}|$. Prove that f is a homeomorphism.

Reminder: Suppose E is a vector space. A subset $C \subset E$ is called convex, if to every $\mathbf{x}, \mathbf{y} \in C$ and $t \in[0,1]$, we always have $(1-t) \mathbf{x}+t \mathbf{y} \in C$.
(Hint: Starting with the plane $(n=2)$ could be helpful since then it might be easier to figure out how the three assumptions about D are used. Extending the ideas to other dimensions should then be straightforward using the results proven in the lectures and the known connectedness and compactness properties of \mathbb{R} and \mathbb{R}^{n}.)

