Topology II Spring 2015 Homework set 10 Tue 31.3.2015

Exercise 1

Prove that the separation properties T_1 and T_2 are preserved in Cartesian products.

(In other words, given n = 1 or n = 2, you need to prove that, if $X_j, j \in J$, are T_n , then the product space $X := \prod_{j \in J} X_j$ is T_n .)

Exercise 2

Suppose that \mathcal{B} is a base for a topological space X which is T_0 . Prove that card $X \leq$ card $\mathcal{P}(\mathcal{B})$. Conclude that if a T_0 -space X has a countable base, then the cardinality of X cannot be larger than that of \mathbb{R} .

(*Hint:* Show that the condition " $A \in f(x) \Leftrightarrow x \in A$ " defines a function $f: X \to \mathcal{P}(\mathcal{B})$. Prove that this function is injective.)

Exercise 3

Prove Theorem 12.11: The countability properties N_1 and N_2 are always inherited by subsets.

(In other words, given n = 1 or n = 2, prove that, if X is an N_n space and $A \subset X$, then A is also an N_n -space in the relative topology.)

Exercise 4

Prove that the topological space $X = \mathbb{R}$, endowed with the topology \mathcal{T}_{pa} defined in Homework 2.2, is normal.

(*Hint:* Let $A, B \subset X$ be disjoint and (\mathcal{T}_{pa}) -closed. To every $x \in A$ find r(x) > 0 such that the interval [x, x + r(x)] does not intersect with B. The union U of these intervals is a neighbourhood of A. Construct analogously a neighbourhood V of B and show that U and V are disjoint.)

(Continues...)

Exercise 5

Consider $X := \mathbb{R}^2$ and its "x-axis", the subset $A := \{(x,0) | x \in \mathbb{R}\}$. Let the collection $\mathcal{B} \subset \mathcal{P}(X)$ contain every subset which is either 1) a subset of $X \setminus A$ which is open in the ordinary topology or 2) one of the sets

$$B'(z,r) := (B(z,r) \setminus A) \cup \{z\},\$$

for some $z \in A$ and r > 0.

- (a) Using Theorem 2.9 (Base theorem) conclude that \mathcal{B} is a base for a topology on X. Denote this topology by \mathcal{T} .
- (b) Prove that (X, \mathcal{T}) is Hausdorff.
- (c) Prove that (X, T) is not regular.
 (*Hint:* Consider the neighbourhood U := B'(0, 1) of the origin 0 and suppose V is a neighbourhood of 0 for which V ⊂ U. Prove that this leads to a contradiction by finding a point a = (r, 0), r > 0, for which a ∉ U but a ∈ V. Recall Theorem 11.6.)