NB: The results for the first midterm exam are now available on the department's results webpage (link available on the course homepage). If you wish, you can check the grading of your answers from the lecturer.

Exercise 1

Prove Theorem 10.14 (Weierstrass M-test):

Suppose D is a set, E is a Banach space, and $u_{n}: D \rightarrow E, n \in \mathbb{N}$, are functions. Assume that there are $M_{n} \geq 0$ are such that $\sum_{n} M_{n}<\infty$ and $\left\|u_{n}(x)\right\| \leq M_{n}$ for all $x \in D, n \in \mathbb{N}$. Prove that then the series $\sum_{n} u_{n}$ converges uniformly on D.
(Hint: Denote $R_{n}:=\sum_{j=n+1}^{\infty} M_{j}$ and $s_{n}(x):=\sum_{j=1}^{n} u_{j}(x)$. Show first that $\| s_{n+p}(x)-$ $s_{n}(x) \| \leq R_{n}$, for all $x \in D$ and $p, n \in \mathbb{N}$, and then use completeness.)

Exercise 2

A subset A of a topological space X is called nowhere dense (suom. harva) if int $\bar{A}=\emptyset$. A subset is called meager (suom. laiha) or of first category if it can be written as a countable union of nowhere dense sets.

Prove the following statements:
(a) A countable union of meager sets is meager.
(b) If X is a complete metric space and $A \subset X$ is meager, then $\operatorname{int} A=\emptyset$.
(c) Give an example of a meager set $A \subset \mathbb{R}$ which is not nowhere dense.

Exercise 3

Consider a set $X \neq \emptyset$ and a metric space (Y, d). Denote the collection of all bounded functions $X \rightarrow Y$ by "raj (X, Y) ". As proven in "Topologia I, Lause I.2.14" a function $f: X \rightarrow Y$ belongs to $\operatorname{raj}(X, Y)$ if and only if there are $y \in Y$ and $r>0$ such that $d(f(x), y)<r$ for all $x \in X$.
(a) Show that the equation

$$
e(f, g):=\sup _{x \in X} d(f(x), g(x)),
$$

defines a metric on $\operatorname{raj}(X, Y)$. (This is called the sup-metric on $\operatorname{raj}(X, Y)$.)
(b) Prove that, if Y is complete, then $\operatorname{raj}(X, Y)$ is complete in the sup-metric e.

Exercise 4

Consider a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ (it has derivatives $f^{(n)}(x)$ at all orders $n \in \mathbb{N}$ and at every point $x \in \mathbb{R}$). Assume that to every point $x \in \mathbb{R}$ we can find some order $n(x) \in \mathbb{N}$ such that the corresponding derivative vanishes at x, that is, such that $f^{(n(x))}(x)=0$. Prove that then any interval $[a, b], a<b$, contains an open interval on which f is a polynomial function.
(Hint: Use Baire's theorem and the sets $A_{k}:=\left\{x \in \mathbb{R} \mid f^{(k)}(x)=0\right\}, k \in \mathbb{N}$. In fact, f is a polynomial function everywhere, but the proof of this property is more involved: see Exercise 10:15 in the textbook if you are interested in the details.)

Exercise 5

As usual, let $\bar{B}^{n}:=\left\{x \in \mathbb{R}^{n}| | x \mid \leq 1\right\}$ and $S^{n-1}:=\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}$ denote the closed unit ball and the unit sphere in \mathbb{R}^{n}. Show that $\bar{B}^{n} / S^{n-1} \approx S^{n}$ by constructing a continuous function $f: \bar{B}^{n} \rightarrow S^{n}$ for which \bar{B}^{n} / S^{n-1} is the partition corresponding to R_{f} in the canonical decomposition of f.
(Hint: The proof for the case $n=1$ is essentially the same as the proof of $[0,1] /\{0,1\} \approx S^{1}$ given in Example 9.12.1 of the textbook and in the lectures.)

