NB: The first course exam will be held on Thursday, March 5th, at 13:00-15:00 in one of the lecture halls in Exactum. Check the list near the entrance to Lecture hall A111 (Lars Ahlfors Auditorium) for the exact location.
The exam covers chapters $1-8$ of the Topologia II textbook: more details will be given on the course webpage at least one week before the exam.

Exercise 1

Suppose that to every $j \in J$ there is given a continuous function $f_{j}: X_{j} \rightarrow X_{j}^{\prime}$ between the topological spaces X_{j} and X_{j}^{\prime}. Show that the product $g:=\prod_{j \in J} f_{j}$, which is a function $\prod_{j \in J} X_{j} \rightarrow \prod_{j \in J} X_{j}^{\prime}$ defined by the formula $g(x)_{j}:=f_{j}\left(x_{j}\right)$, is then continuous.

Exercise 2

Prove item (2) of Theorem 7.14: Suppose $X:=\prod_{j \in J} X_{j}$ is a product space and $A_{j} \subset X_{j}$, for $j \in J$. Show that $\bar{A}=\prod_{j \in J} \bar{A}_{j}$ for $A:=\prod_{j \in J} A_{j} \subset X$.
(The point of the exercise is to prove that $\mathrm{cl}_{X} A$ and $\prod_{j \in J}\left(\mathrm{cl}_{X_{j}} A_{j}\right)$ are the same subset of X, using only the results proven before Theorem 7.14, that is, using only the basic properties of the product topology.)

Exercise 3

A function $f: X \rightarrow Y$ is called constant, if there is $y_{0} \in Y$ such that $f(x)=y_{0}$ for all $x \in X$.
(a) Suppose that $Y \neq \emptyset$ is a topological space and $X \neq \emptyset$ is a set. What is the topology induced on X by the collection of all constant functions $X \rightarrow Y$?
(b) Suppose that $X \neq \emptyset$ is a topological space and $Y \neq \emptyset$ is a set. What is the topology coinduced on Y by the collection of all constant functions $X \rightarrow Y$?
(Hint: When is a constant function continuous?)

Exercise 4

Consider two continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ between the topological spaces X and Y. Show that, if $g \circ f=\mathrm{id}$, then f is an embedding and g is an identification map.
(As in the textbook, a function is called an identification map (samastuskuvaus) if it is surjective and coinduces the original topology in the target space.)

Exercise 5

If X is a set and $A \subset X$, the function $\chi_{A}: X \rightarrow \mathbb{R}$ defined by setting $\chi_{A}(x)=1$, for $x \in A$, and $\chi_{A}(x)=0$, for $x \notin A$, is called the characteristic function of the set A.

Let Y denote the product space $\mathbb{R}^{\mathbb{R}}$ and $F:=\left\{\chi_{A}: \mathbb{R} \rightarrow \mathbb{R} \mid A \subset \mathbb{R}, A\right.$ is finite $\} \subset Y$.
(a) Let g denote the constant function for which $g(x)=1$ for all $x \in \mathbb{R}$. Show that g belongs to the closure of F.
(b) Show that no sequence in F converges to g.
(c) Explain why this implies that the topology of Y cannot be given by a metric.
(d) Construct a discontinuous function $f: F \cup\{g\} \rightarrow \mathbb{R}$ such that $f\left(x_{n}\right) \rightarrow f(x)$ whenever $x_{n} \rightarrow x$ in $F \cup\{g\}$.

