Topology II Spring 2015 Homework set 3 Tue 3.2.2015

NB: Exercise 6^* is again a voluntary bonus exercise.

Exercise 1

Consider a function $f : X \to Y$ and two families of subsets $A_j \subset X$ and $B_j \subset Y$, $j \in J$, indexed by a set J. Prove the following relations for preimages and images involving unions and intersections:

- (a) $f \leftarrow \left[\bigcup_{j \in J} B_j\right] = \bigcup_{j \in J} f \leftarrow \left[B_j\right].$
- (b) $f \leftarrow \left[\bigcap_{j \in J} B_j\right] = \bigcap_{j \in J} f \leftarrow [B_j].$
- (c) $f\left[\bigcup_{j\in J} A_j\right] = \bigcup_{j\in J} f[A_j].$
- (d) $f[\bigcap_{j\in J} A_j] \subset \bigcap_{j\in J} f[A_j].$
- (e) Show that, if f is injective and $J \neq \emptyset$, then $f[\bigcap_{i \in J} A_i] = \bigcap_{i \in J} f[A_i]$.
- (f) Suppose f is not injective. Find some $A, A' \subset X$ for which $f[A \cap A'] \neq f[A] \cap f[A']$.

Exercise 2

Suppose $f: X \to Y$ is a homeomorphism between topological spaces X and Y. Prove that then every subset $A \subset X$ satisfies:

- (a) $\overline{f[A]} = f[\overline{A}].$
- (b) $\operatorname{int} f[A] = f[\operatorname{int} A].$
- (c) $\operatorname{ext} f[A] = f[\operatorname{ext} A].$
- (d) $\partial f[A] = f[\partial A].$

Remark: Therefore, all "topological properties" are preserved in a homeomorphism. *Hint:* This is not a lengthy exercise *if* you use the Theorems of Sections 1–3 of the textbook.

Exercise 3

Define a function $f : \mathbb{R} \to \mathbb{R}$ using the formula f(x) := -x. By Section 3.6 of the textbook, f is continuous in the ordinary topology. (If you are unsure about the reasoning used in Section 3.6, recall more details from the Topology I textbook.)

Is f continuous if both the domain and the target set are endowed with the topology \mathcal{T}_{pa} defined in Exercise 2.2? (Remember to prove your answer.)

Exercise 4

Consider some $n, p \in \mathbb{N}$ and a function $f : \mathbb{R}^n \to \mathbb{R}^p$ which is continuous using the ordinary topologies. Prove that, if $|f(x_n)| \to \infty$ whenever (x_n) is a sequence such that $|x_n| \to \infty$, then f is a closed map. Conclude that every polynomial $\mathbb{R} \to \mathbb{R}$ is a closed map.

(*Hint:* The solution requires basic results about compact sets and continuity in the normed space \mathbb{R}^n , as (hopefully) familiar from Topology I.)

(Continues...)

Exercise 5

Define $\mathcal{T} := \{\emptyset\} \cup \{U \subset \mathbb{R} \mid \mathbb{R} \setminus U \text{ is countable}\}$. Show that \mathcal{T} is a topology on \mathbb{R} and denote the resulting topological space by X. Prove the following statements:

- (a) A sequence (x_n) in X converges to a point a if and only if there is some $n_0 \in \mathbb{N}$ such that $x_n = a$ for all $n \ge n_0$.
- (b) The point 0 belongs to the closure of the interval A := [1, 2] in X but no sequence in A converges to 0.
- (c) Consider an arbitrary function $f: X \to Y$ from X to a topological space Y. Show that, if a sequence $x_n \to a$, then $f(x_n) \to f(a)$.
- (d) Find a discontinuous function $f: X \to Y$ to some topological space Y.

Remark: This shows that, unlike in metric spaces (see Topology I.11.8), the convergence condition about sequences given in item (c) does not guarantee that the function is continuous in the topology \mathcal{T} .

Exercise 6* (bonus exercise)

Filter bases and continuity of functions

Consider a topological space X. A collection $\mathcal{F} \subset \mathcal{P}(X)$ is called a *filter base* if it satisfies the following conditions:

- (1) $\mathcal{F} \neq \emptyset$.
- (2) $\emptyset \notin \mathcal{F}$.
- (3) If $A, B \in \mathcal{F}$, then $C \subset A \cap B$ for some $C \in \mathcal{F}$.

We say that a filter base \mathcal{F} converges to a point $a \in X$ if every neighborhood U of a has some $A \in \mathcal{F}$ for which $A \subset U$.

Consider then a function $f: X \to Y$ between the topological spaces X and Y. Prove the following:

- (a) If $a \in X$, then the neighborhoods of a form a filter base which converges to a.
- (b) If \mathcal{F} is a filter base in X, then the collection $\{fA \mid A \in \mathcal{F}\}$ is a filter base in Y.
- (c) If f is continuous at $a \in X$ and \mathcal{F} is a filter base which converges to a, then $\{fA \mid A \in \mathcal{F}\}$ converges to f(a).
- (d) Also the converse of (c) holds: Suppose $a \in X$ is such that for every filter base \mathcal{F} converging to a also the filter base $\{fA \mid A \in \mathcal{F}\}$ converges to f(a). Show that f is then continuous at a.