NB: Exercise 6^{*} is again a voluntary bonus exercise.

Exercise 1

Let d and e be metrics on the set X and denote the topologies they generate on X by \mathcal{T}_{d} and \mathcal{T}_{e}.
(a) Show that, if there is a constant $c>0$ such that $d(x, y) \leq c e(x, y)$ for all $x, y \in X$, then $\mathcal{T}_{d} \subset \mathcal{T}_{e}$.
(b) Two metrics d and e on X are called strongly equivalent if there are $a, b>0$ such that

$$
a d(x, y) \leq e(x, y) \leq b d(x, y), \quad \text { for all } x, y \in X
$$

Show that strongly equivalent metrics are also topologically equivalent: then $\mathcal{T}_{d}=\mathcal{T}_{e}$.

Exercise 2

Consider the collection $\mathcal{B}:=\{[a, b[\mid a, b \in \mathbb{R}, a<b\}$ of intervals of \mathbb{R}.
(a) Prove that \mathcal{B} is a base for a topology $\mathcal{T}_{\text {pa }}$ on \mathbb{R}. Show that it is strictly finer than the ordinary topology on \mathbb{R}.
(Hint: See Example 2.11. in the textbook.)
(b) Prove that any interval $B \in \mathcal{B}$ is both open and closed in $\left(\mathbb{R}, \mathcal{T}_{\text {pa }}\right)$.
(c) Determine the closure and boundary of the interval $] 0,1\left[\right.$ in $\left(\mathbb{R}, \mathcal{T}_{\text {pa }}\right)$.

Exercise 3

Consider the following three collections $\mathcal{B}_{i} \subset \mathcal{P}(\mathbb{R}), i=1,2,3$:
(1) $\mathcal{B}_{1}:=\{] x-1, x+1[\mid x \in \mathbb{R}\}$,
(2) $\mathcal{B}_{2}:=\left\{\left.\left[-\frac{1}{n}, \frac{1}{n}\right] \right\rvert\, n \in \mathbb{N}\right\}$,
(3) $\mathcal{B}_{3}:=\{] a, b[\cup] c, \infty[\mid a<b<c\}$.

Which of these collections yield a base for some topology on \mathbb{R} ? For each i for which \mathcal{B}_{i} is a base, let \mathcal{T} denote the corresponding topology generated by \mathcal{B}_{i}.
(a) Is there is any relation between \mathcal{T} and the ordinary topology on \mathbb{R} ? (coarser, finer, equal?)
(b) Determine $\left.\mathrm{cl}_{\mathcal{T}}\right] 0,1[$.

Exercise 4

What is the topology on \mathbb{R}^{3} generated by the collection of all planes in \mathbb{R}^{3} ?

Exercise 5

Suppose X is topological space and $A \subset X$. Prove the following statements:
(a) $\partial \partial A \subset \partial A$.
(b) If A is closed, then $\partial \partial A=\partial A$.
(c) Always $\partial \partial \partial A=\partial \partial A$.

By considering the case $X:=\mathbb{R}, A:=\mathbb{Q}$, show that in general the inclusion " \subset " cannot be replaced by an equality " $=$ " in item (a).

Exercise 6* (bonus exercise)

Order topology

A relation " \leq " on a set H is called an order, if it has the following properties for every $a, b, c \in H$:
(1) $a \leq a$.
(2) If $a \leq b$ and $b \leq a$, then $a=b$. (Often shortened to " $a \leq b \leq a \Rightarrow a=b$.")
(3) If $a \leq b$ and $b \leq c$, then $a \leq c$. (Often shortened to " $a \leq b \leq c \Rightarrow a \leq c$.")

An order is total, if additionally every $a, b \in H$ has $a \leq b$ or $b \leq a$. If $a \leq b$ and $a \neq b$, we denote $a<b$. We can then also define "intervals on H " analogously to those in \mathbb{R} : we define $[a, b]:=\{x \in H \mid a \leq x \leq b\}$, whenever $a \leq b$, and using this notation we define for all $a<b$,

$$
] a, b[:=[a, b] \backslash\{a, b\}, \quad] a, b]:=[a, b] \backslash\{a\}, \quad[a, b[:=[a, b] \backslash\{b\}
$$

(Note that it is possible that $] a, b[=\emptyset$, even though $a<b$.)
Assume that (H, \leq) is a totally ordered set with at least two elements. Define a collection of its subsets as $\mathcal{B}:=\mathcal{B}_{0} \cup \mathcal{B}_{1} \cup \mathcal{B}_{2}$ where
(1) $\mathcal{B}_{0}:=\{] a, b[\mid a<b\}$.
(2) $\left.\left.\mathcal{B}_{1}:=\{] a, M\right] \mid a \in H, a \neq M\right\}$ if H contains a maximum M (this is an element such that $a \leq M$ for all $a \in H)$. Otherwise, define $\mathcal{B}_{1}:=\emptyset$.
(3) $\mathcal{B}_{2}:=\{[m, b[\mid b \in H, b \neq m\}$ if H contains a minimum m (this is an element such that $m \leq a$ for all $a \in H)$. Otherwise, define $\mathcal{B}_{2}:=\emptyset$.

Prove that then the following statements hold:
(a) Suppose that $a_{1} \leq b_{1}$ and $a_{2} \leq b_{2}$. Set $a:=a_{1}$, if $a_{1} \geq a_{2}$, and else set $a:=a_{2}$. (Then $a=\max \left(a_{1}, a_{2}\right)$). Similarly, set $b:=b_{1}$, if $b_{1} \leq b_{2}$, and else $b:=b_{2}$. (Then $\left.b=\min \left(b_{1}, b_{2}\right)\right)$. Show that

$$
\left[a_{1}, b_{1}\right] \cap\left[a_{2}, b_{2}\right]= \begin{cases}{[a, b],} & \text { if } a \leq b \\ \emptyset, & \text { otherwise }\end{cases}
$$

(b) Prove that \mathcal{B} is a base for a topology on H. This topology is called the order topology generated by the order \leq on H and we denote it by \mathcal{T}_{\leq}.
(Hint: Recall item (a) and that $A \backslash B=A \cap \complement B$ for $A, B \subset H$.)
(c) Show that, if $a \in H$, then the sets $\{x \in H \mid x<a\}$ and $\{x \in H \mid x>a\}$ are open in the order topology.
(d) Prove that $\left(H, \mathcal{T}_{\leq}\right)$is a Hausdorff space.

