Topology II Spring 2015

Homework set 2 Tue 27.1.2015

NB: Exercise 6^* is again a voluntary bonus exercise.

Exercise 1

Let d and e be metrics on the set X and denote the topologies they generate on X by \mathcal{T}_d and \mathcal{T}_e .

- (a) Show that, if there is a constant c > 0 such that $d(x, y) \le ce(x, y)$ for all $x, y \in X$, then $\mathcal{T}_d \subset \mathcal{T}_e$.
- (b) Two metrics d and e on X are called strongly equivalent if there are a, b > 0 such that

 $ad(x,y) \le e(x,y) \le bd(x,y)$, for all $x, y \in X$.

Show that strongly equivalent metrics are also topologically equivalent: then $\mathcal{T}_d = \mathcal{T}_e$.

Exercise 2

Consider the collection $\mathcal{B} := \{ [a, b[| a, b \in \mathbb{R}, a < b \} \text{ of intervals of } \mathbb{R}.$

(a) Prove that \mathcal{B} is a base for a topology \mathcal{T}_{pa} on \mathbb{R} . Show that it is strictly finer than the ordinary topology on \mathbb{R} .

(*Hint:* See Example 2.11. in the textbook.)

- (b) Prove that any interval $B \in \mathcal{B}$ is both open and closed in $(\mathbb{R}, \mathcal{T}_{pa})$.
- (c) Determine the closure and boundary of the interval]0,1[in $(\mathbb{R},\mathcal{T}_{pa})$.

Exercise 3

Consider the following three collections $\mathcal{B}_i \subset \mathcal{P}(\mathbb{R}), i = 1, 2, 3$:

- (1) $\mathcal{B}_1 := \{ |x 1, x + 1| | x \in \mathbb{R} \},\$
- (2) $\mathcal{B}_2 := \{ [-\frac{1}{n}, \frac{1}{n}] \mid n \in \mathbb{N} \},$
- (3) $\mathcal{B}_3 := \{]a, b[\cup]c, \infty[| a < b < c \}.$

Which of these collections yield a base for some topology on \mathbb{R} ? For each *i* for which \mathcal{B}_i is a base, let \mathcal{T} denote the corresponding topology generated by \mathcal{B}_i .

- (a) Is there is any relation between \mathcal{T} and the ordinary topology on \mathbb{R} ? (coarser, finer, equal?)
- (b) Determine $\operatorname{cl}_{\mathcal{T}}]0, 1[.$

Exercise 4

What is the topology on \mathbb{R}^3 generated by the collection of all planes in \mathbb{R}^3 ?

(Continues...)

Exercise 5

Suppose X is topological space and $A \subset X$. Prove the following statements:

- (a) $\partial \partial A \subset \partial A$.
- (b) If A is closed, then $\partial \partial A = \partial A$.
- (c) Always $\partial \partial \partial A = \partial \partial A$.

By considering the case $X := \mathbb{R}$, $A := \mathbb{Q}$, show that in general the inclusion " \subset " cannot be replaced by an equality "=" in item (a).

Exercise 6* (bonus exercise)

Order topology

A relation " \leq " on a set *H* is called an *order*, if it has the following properties for every $a, b, c \in H$:

- (1) $a \leq a$.
- (2) If $a \leq b$ and $b \leq a$, then a = b. (Often shortened to " $a \leq b \leq a \Rightarrow a = b$.")
- (3) If $a \leq b$ and $b \leq c$, then $a \leq c$. (Often shortened to " $a \leq b \leq c \Rightarrow a \leq c$.")

An order is *total*, if additionally every $a, b \in H$ has $a \leq b$ or $b \leq a$. If $a \leq b$ and $a \neq b$, we denote a < b. We can then also define "intervals on H" analogously to those in \mathbb{R} : we define $[a,b] := \{x \in H \mid a \leq x \leq b\}$, whenever $a \leq b$, and using this notation we define for all a < b,

$$[a, b] := [a, b] \setminus \{a, b\}, \quad [a, b] := [a, b] \setminus \{a\}, \quad [a, b] := [a, b] \setminus \{b\}$$

(Note that it is possible that $[a, b] = \emptyset$, even though a < b.)

Assume that (H, \leq) is a totally ordered set with at least two elements. Define a collection of its subsets as $\mathcal{B} := \mathcal{B}_0 \cup \mathcal{B}_1 \cup \mathcal{B}_2$ where

- (1) $\mathcal{B}_0 := \{]a, b[| a < b \}.$
- (2) $\mathcal{B}_1 := \{]a, M] \mid a \in H, a \neq M \}$ if H contains a maximum M (this is an element such that $a \leq M$ for all $a \in H$). Otherwise, define $\mathcal{B}_1 := \emptyset$.
- (3) $\mathcal{B}_2 := \{ [m, b] \mid b \in H, b \neq m \}$ if H contains a minimum m (this is an element such that $m \leq a$ for all $a \in H$). Otherwise, define $\mathcal{B}_2 := \emptyset$.

Prove that then the following statements hold:

(a) Suppose that $a_1 \leq b_1$ and $a_2 \leq b_2$. Set $a := a_1$, if $a_1 \geq a_2$, and else set $a := a_2$. (Then $a = \max(a_1, a_2)$). Similarly, set $b := b_1$, if $b_1 \leq b_2$, and else $b := b_2$. (Then $b = \min(b_1, b_2)$). Show that

$$[a_1, b_1] \cap [a_2, b_2] = \begin{cases} [a, b], & \text{if } a \le b, \\ \emptyset, & \text{otherwise} \end{cases}$$

- (b) Prove that \mathcal{B} is a base for a topology on H. This topology is called the *order topology* generated by the order \leq on H and we denote it by \mathcal{T}_{\leq} . (*Hint:* Recall item (a) and that $A \setminus B = A \cap \complement B$ for $A, B \subset H$.)
- (c) Show that, if $a \in H$, then the sets $\{x \in H \mid x < a\}$ and $\{x \in H \mid x > a\}$ are open in the order topology.
- (d) Prove that (H, \mathcal{T}_{\leq}) is a Hausdorff space.