Topology II Spring 2015 Homework set 0 (ex tempore) Tue 13.1.2015

Exercise 1

Let X be a set. Suppose that J is an indexing set for a family A_j , $j \in J$, of subsets of X. Show that then for every $B \subset X$

$$B \cap \left(\bigcup_{j \in J} A_j\right) = \bigcup_{j \in J} \left(B \cap A_j\right) \,.$$

Exercise 2

Consider functions $f: X \to Y, g: Y \to Z$ between the sets X, Y, Z. Prove the following statements:

- (a) $(g \circ f)[A] = g[f[A]]$ for all $A \subset X$.
- $(\mathbf{b}) \quad (g \circ f){}^{\leftarrow}\![C] = f{}^{\leftarrow}\![g{}^{\leftarrow}\![C]] \text{ for all } C \subset Z.$

(Notations: Here $g \circ f : X \to Z$ denotes the composite function, $f[A] := \{f(x) | x \in A\}$ denotes an image, and $g^{\leftarrow}[C] := \{y \in Y | g(y) \in C\}$ a preimage. In the course textbook and the lectures, the last two are typically denoted by "fA" and " $g^{\leftarrow}C$ " or " $g^{-1}C$ ".)

Exercise 3

Minitopology

Consider a set X and define $\mathcal{T}_{\min} := \{\emptyset, X\}.$

- (a) Show that \mathcal{T}_{\min} is a topology on X.
- (b) Is always $\#\mathcal{T}_{\min} = 2$? (In other words, does the set always have two elements?)
- (c) Suppose that $\#X \ge 2$ and that $d: X \times X \to \mathbb{R}_+$ is a metric on X. Find an open ball in the metric d which does not belong to \mathcal{T}_{\min} . (This shows that, if a set has at least two elements, its minitopology is not metrizable.)

Exercise 4

Consider a function $f: X \to Y$ between sets X and Y. Show that then for all $B \subset Y$

$$f^{\leftarrow}[\mathsf{C}B] = \mathsf{C}f^{\leftarrow}[B] \,.$$