Department of Mathematics and Statistics Stochastic processes on domains Suggestions to excercise problem sheet 6

Note. In the Problems 1-12 the j,k and n are always integers. Note. The Problems 1-4 provide a proof of the Lévy's Characterisation Theorem.

1. Suppose M is a 1-dimensional continuous local (\mathscr{F}_t) -martingale. Show that for every $\lambda \in \mathbb{C}$, the process

$$Z_t^{\lambda} := \exp\left(\lambda M_t - \frac{1}{2}\lambda^2 \langle M, M \rangle_t\right)$$

is a local martingale. (Hint. Itō with f such that $f(M, \langle M, M \rangle) = Z^{\lambda}$). Suggestion. Let's denote $A_t = \langle M, M \rangle_t$. This is a continuous increasing, (\mathscr{F}_t) -adapted process.

Following the hint, let's take $f(x, y) = e^{\lambda x - \frac{1}{2}\lambda^2 y}$. Then $\partial_x f = \lambda f$, $\partial_x^2 f = \lambda^2 f$ and $\partial_y f = -\frac{1}{2}\lambda^2 f$. Therefore,

$$\begin{split} f(M_t, A_t) &= f(M_0, A_0) + \int_0^t \lambda f(M_s, A_s) \,\mathrm{d}M_s - \int_0^t \frac{1}{2} \lambda^2 f(M_s, A_s) \,\mathrm{d}A_s \\ &+ \int_0^t \frac{1}{2} \lambda^2 f(M_s, A_s) \,\mathrm{d}\langle M, M \rangle_s \end{split}$$

Since $A = \langle M, M \rangle$ the two terms on the right cancel each other and we are left with a local martingale term $\lambda f(M_t, A_t) dM_t$. This gives the claim.

2. Suppose $X = (X^1, \ldots, X^d)$ is a *d*-dimensional continuous local (\mathscr{F}_t) -martingale, suppose $X_0 = 0$ and suppose $\langle X^j, X^k \rangle_t = [j = k]t$. Show that for every $f = (f_1, \ldots, f_d)$ with $f_j \in L^2(\mathbb{R}^+)$ the process

$$Y_t^f := \exp\left(i\sum_{k=1}^d \int_0^t f_k(X_s) \, \mathrm{d}X_s^k + \frac{1}{2}\sum_{k=1}^d \int_0^t f_k^2(X_s) \, \mathrm{d}s\right)$$

is a complex and bounded martingale. (Hint. Problem 1 with suitable λ and M). Suggestion. If we compare the claim of Problem 2 and the Problem 1. we should try

$$M_t = \alpha \sum_{k=1}^d \int_0^t f_k(X_s) \, \mathrm{d}X_s^k$$

Then

$$\langle M, M \rangle_t = \alpha^2 \sum_{k,l=1}^d \int_0^t f_k(X_s) f_l(X_s) \,\mathrm{d}\langle X^k, X^l \rangle_s$$

= $\alpha^2 \sum_{k=1}^d \int_0^t f_k^2(X_s) \,\mathrm{d}s$

since $\langle X^k, X^l \rangle_s = s[k = l]$. With this choice the process Z^{λ} of the Problem 1 coincides with Y^f is

$$\lambda \alpha = i$$
 and $-\lambda^2 \alpha^2 = 1$

This has many solutions, one of which is $\lambda = i, \alpha = 1$.

3. Suppose X is a (\mathscr{F}_t) -adapted continuous d-dimensional process, $X_0 = 0$ and let Y^f be the process as in Problem 2. Suppose for every $f = (f_1, \ldots, f_d)$ with $f_k \in L^2(\mathbb{R}^+)$ the process Y^f is complex and bounded (\mathscr{F}_t) -martingale. Show that

$$\mathbf{E}_0[A] \exp\left(i\xi \cdot (X_t - X_s)\right) = \mathbf{P}_0(A) \exp\left(-\frac{1}{2}|\xi|^2(t-s)\right)$$

holds for every s < t < u, every $\xi \in \mathbb{R}^d$ and every $A \in \mathscr{F}_s$. (Hint. $f = (f_1, \ldots, f_d)$ with $f_k(s) = \xi_k[s \le u]$)

Suggestion. The functions f_k that were given as a hint are in $L^2(\mathbb{R}_+)$ since

$$\int_0^\infty f_k^2(s) \,\mathrm{d}s = u\,\xi_k^2 < \infty$$

Therefore, the corresponding process Y^f is a complex and bounded martingale. Since Y^f is an exponential function, $Y_t^f \neq 0$ for every t and so $1/Y_s^f$ is well-defined. By the martingale property

$$\mathbf{E}_{0}\left(\left[A\right]\frac{Y_{t}^{f}}{Y_{s}^{f}}\right) = \mathbf{E}_{0}\left(\left[A\right]\frac{\mathbf{E}_{0}\left(Y_{t}^{f} \mid \mathscr{F}_{s}\right)}{Y_{s}^{f}}\right) = \mathbf{E}_{0}\left(\left[A\right]\frac{Y_{s}^{f}}{Y_{s}^{f}}\right) = \mathbf{P}_{0}\left(A\right)$$

holds for every $A \in \mathscr{F}_s$ and every s < t < u and since

$$\frac{Y_t^f}{Y_s^f} = \exp\left(i\sum_{k=1}^d \int_s^t f_k(X_v) \, \mathrm{d}X_v^k + \frac{1}{2}\sum_{k=1}^d \int_s^t f_k^2(X_v) \, \mathrm{d}v\right)$$

we are almost done. The latter (ordinary) integral is

$$\sum_{k} \int_{s}^{t} f_{k}^{2}(X_{v}) \, \mathrm{d}v = \sum_{k} \xi_{k}^{2} \int_{s}^{t} [v \le u] \, \mathrm{d}v = |\xi|^{2} (t-s)$$

since s < t < u. The former integral with respect to X is

$$\sum_{k} \int_{s}^{t} f_{k}(X_{v}) \, \mathrm{d}X_{v}^{k} = \sum_{k} \xi_{k} \int_{s}^{t} [v \le u] \, \mathrm{d}X_{v}^{k} = \xi \cdot (X_{t} - X_{s})$$

If we combine all these we obtain

$$\mathbf{E}_{0}\left(\left[A\right]\frac{Y_{t}^{J}}{Y_{s}^{f}}\right) = \mathbf{E}_{0}\left[A\right]\exp(i\xi\cdot(X_{t}-X_{s}))e^{\frac{1}{2}|\xi|^{2}(t-s)} = \mathbf{P}_{0}(A)$$

which implies the claim.

4. Assume the same as in Problem 3. Show that for every s < t the increment $X_t - X_s$ is independent from \mathscr{F}_s and show X has the same expectation and variance as Brownian motion (i.e. show that X is (\mathscr{F}_t) -Brownian motion).

Suggestion. We know from Problem 3. that

$$\mathbf{E}_{0}[A] \exp(i\xi \cdot (X_{t} - X_{s})) = \mathbf{P}_{0}(A) \ e^{-\frac{1}{2}|\xi|^{2}(t-s)}$$

If we choose $A = \Omega$ and s = 0, then we obtain the characteristic function of X_t and we notice that it coincide with the characteristic function of the Brownian motion B_t at time t.

So it is enough to show the independence of the increment $X_t - X_s$ from \mathscr{F}_s . Let's denote the increment $Z = i(X_t - X_s)$ and $f_{\xi}(x) = \exp(x \cdot \xi)$. First we notice (again), then when $A = \Omega$ we have

$$\mathbf{E}_0 f_{\xi}(Z) = e^{-\frac{1}{2}|\xi|^2(t-s)}$$

and therefore,

$$\mathbf{E}_0[A]f_{\xi}(Z) = \mathbf{P}_0(A)\mathbf{E}_0f_{\xi}(Z) = \mathbf{E}_0[A]\mathbf{E}_0f_{\xi}(Z)$$

for every $A \in \mathscr{F}_s$ and for every f_{ξ} . When $\mathbf{P}_0(A) \neq 0$, we can hence deduce that

$$\mathbf{E}_0(f_{\xi}(Z) \mid A) = \mathbf{E}_0 f_{\xi}(Z)$$

for every ξ . If we define $\lambda(U) = \mathbf{P}_0 (A)^{-1} \mathbf{P}_0 (\{Z \in U\} \cap A)$ and $\mu(U) = \mathbf{P}_0 (Z \in U)$ for every Borel set $U \subset \mathbb{R}^d$ we see that both λ and μ are Borel probability measures on \mathbb{R}^d and moreover, that

$$\mathbf{E}_0(f(Z) \mid A) = \int_{\mathbb{R}^d} f(y) \lambda(\,\mathrm{d}y)$$

and

$$\mathbf{E}_0 f(Z) = \int_{\mathbb{R}^d} f(y) \mu(\,\mathrm{d} y)$$

for every bounded and measurable function f (why? well, both can be easily seen to hold for simple functions and then monotone convergence gives the general case). Since f_{ξ} is a bounded and measurable function, we obtain that

$$\int_{\mathbb{R}^d} e^{i\xi \cdot y} \lambda(\,\mathrm{d} y) = \int_{\mathbb{R}^d} e^{i\xi \cdot y} \mu(\,\mathrm{d} y)$$

for every ξ or the characteristic functions of the probability measures λ and μ coincide. Thus, $\lambda = \mu$ which means that

$$\frac{\mathbf{P}_{0}\left(\left\{Z \in U\right\} \cap A\right)}{\mathbf{P}_{0}\left(A\right)} = \mathbf{P}_{0}\left(Z \in U\right)$$

for every Borel set U or

$$\mathbf{P}_{0}\left(\left\{Z \in U\right\} \cap A\right) = \mathbf{P}_{0}\left(A\right)\mathbf{P}_{0}\left(Z \in U\right)$$

for every Borel set U. This identity holds for every $A \in \mathscr{F}_s$ for which $\mathbf{P}_0(A) \neq 0$. However, the identity clearly holds also for every $\mathbf{P}_0(A) = 0$. Thus Z is independent from \mathscr{F}_s and the claim follows.

In Problem 5-7 we look at convex functions.

5. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a convex function. Show that if x' < x are two points on interval (-r/2, r/2), then

$$f(x') - f(x) \le |x - x'| \frac{f(-r) - f(x')}{r + x}.$$

(Hint: in this case -r < x' < x and then convexity)

Suggestion. A function is convex if $f(x\theta + y(1 - \theta)) \leq \theta f(x) + (1 - \theta)f(y)$ for every x < y and $\theta \in (0, 1)$.

In this case x' is between -r and x and so there exists $\theta \in (0, 1)$ such that

$$x' = \theta x + (1 - \theta)(-r) \implies (x + r)(1 - \theta) = (x - x')$$

By convexity we have

$$f(x') \leq \theta f(x) + (1-\theta)f(-r)$$

or

$$f(x') - f(x) \le (1 - \theta)(f(-r) - f(x)) = (x - x')\frac{f(-r) - f(x)}{x + r}$$

which is the *correct claim* since the claim contains a misprint.

6. Continuing with Problem 5. show that if f is convex and $|f| \leq C$ on the interval (-r, r) then

$$|f(x) - f(x')| \le \frac{4C}{r}|x - x'|$$

for every $x, x' \in (-r/2, r/2)$ or in other words, f is locally Lipschitz if f is locally bounded. (Hint: estimate the fraction in Problem 5, and repeat the construction for x > x'.)

Suggestion. According to Problem 5. we know that

$$f(x') - f(x) \le |x - x'| \frac{f(-r) - f(x)}{x + r} \le |x - x'| \frac{2C}{x + r}$$

Since x > -r/2, we have x + r > r/2 and so

$$f(x') - f(x) \le |x - x'| \frac{4C}{r}$$

If we change the roles of x and x' and we change -r to r, we can repeat the Problem 5 and obtain

$$f(x) - f(x') \le |x - x'| \frac{f(r) - f(x')}{r - x'} \le |x - x'| \frac{2C}{r - x'}$$

Again, since x' < r/2, r - x' > r/2 and in both cases

$$f(x) - f(x') \le |x - x'| \frac{4C}{r}$$

This implies the claim.

7. Let $f \colon \mathbb{R} \to \mathbb{R}$ be a convex function. Let $\psi \in C^{\infty}$ which is zero outside an interval (a, b) for a < b < 0, which is positive and which integrates to 1. Define

$$f_n(x) = n \int_{-\infty}^{\infty} f(x+y)\psi(ny) \,\mathrm{d}y.$$

Show that f_n is convex. (Hint. use the definition of convexity directly).

Suggestion. Let us take x < z and $\theta \in (0,1)$ and let's evaluate the f_n at the corresponding point and so

$$f_n(x\theta + z(1-\theta)) = n \int_{-\infty}^{\infty} f(x\theta + (1-\theta)z + y)\psi(ny) \,\mathrm{d}y.$$

Since $(1 - \theta)y + \theta y = y$ for every y, we have

$$f(x\theta + (1-\theta)z + y) = f((x+y)\theta + (1-\theta)(z+y)) \le \theta f(x+y) + (1-\theta)f(z+y)$$

Therefore,

$$f_n(x\theta + z(1-\theta)) = n \int_{-\infty}^{\infty} f(x\theta + (1-\theta)z + y)\psi(ny) \, dy$$
$$\leq n\theta \int_{-\infty}^{\infty} f(x+y)\psi(ny) \, dy$$
$$+ n(1-\theta) \int_{-\infty}^{\infty} f(z+y)\psi(ny) \, dy$$
$$= \theta f_n(x) + (1-\theta)f_n(z)$$

and the claim follows.

8. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function and let ψ and f_n be as in Problem 7. Show that $f'_n(x) \to f'_-(x)$.

Suggestion. Using the change of variables y' = x + y, we have that

$$f_n(x) = n \int_{-\infty}^{\infty} f(y)\psi(n(y-x)) \,\mathrm{d}y.$$

Since ψ is compactly supported and from lectures we know that f is locally bounded, so we can differentiate under the integral sign by dominated convergence theorem and thus,

$$f'_n(x) = -n^2 \int_{-\infty}^{\infty} f(y)\psi'(n(y-x)) \,\mathrm{d}y.$$

Let's change the integration variable once again, this time y' = n(y-x), which means y = x + hy' for $h = n^{-1}$ and dy' = n dy and therefore,

$$f'_n(x) = -n \int_{-\infty}^{\infty} f(x+hy)\psi'(y) \,\mathrm{d}y.$$

Let's note that the left-handed derivative $f'_{-}(x)$ can be defined as

$$f'_{-}(x) = \lim_{h \to 0} \frac{f(x - |h|) - f(x)}{-|h|}$$

Since $f(x+hy)\psi'(y) = 0$ for every y > b and b < 0, this means that if $f(x+hy)\psi'(y) \neq 0$, then hy = -|hy|. We can rewrite the expression we have for $f'_n(x)$ to accomodate this and so

$$\begin{aligned} f_n'(x) &= -n \int_{-\infty}^{\infty} f(x+hy)\psi'(y) \,\mathrm{d}y \\ &= -\int_{-\infty}^{\infty} \frac{f(x-|hy|)}{-|hy|} y\psi'(y) \,\mathrm{d}y \\ &= -\int_{-\infty}^{\infty} \frac{f(x-|hy|) - f(x) + f(x)}{-|hy|} y\psi'(y) \,\mathrm{d}y \end{aligned}$$

Assuming that we know that the left-handed derivative exists, then we can write

$$\frac{f(x-|hy|) - f(x) + f(x)}{-|hy|} y\psi'(y) = f'_{-}(x)y\psi'(y) + nf(x)\psi'(y) + o(1)y\psi'(y)$$

If we assume the existence of the left-handed derivative at x the last error term vanish as $n \to \infty$. The second term seems problematic, since when $n \to \infty$ it explodes. However, the integral of this vanishes for every n and so the limit is zero. Let's verify this

$$-\int_{-\infty}^{\infty} nf(x)\psi'(y)\,\mathrm{d}y = -nf(x)\int_{2a}^{b/2}\psi'(y)\,\mathrm{d}y = -nf(x)(\psi(b/2) - \psi(2a)) = 0$$

since ψ vanishes outside the interval $(a, b) \subset (-\infty, 0)$. So by using the dominated convergence theorem and arguments above we have deduced that

$$\lim_{n \to \infty} f'_n(x) = -\int_{-\infty}^{\infty} f'_-(x)y\psi'(y) \,\mathrm{d}y = -f'_-(x)\Big(0 - \int_{-\infty}^{\infty} \psi(y) \,\mathrm{d}y\Big) = f'_-(x)$$

where we used the integration by parts, the fact that ψ vanish outside (a, b) and the fact that it integrates to one.

9. Suppose $t \mapsto p(t, x, y) \in C^1(\mathbb{R}_+)$ and $(x, y) \mapsto p(t, x, y) \in C^2(D) \cap C^1(\overline{D})$ and that p satisfies the heat equation

$$\begin{cases} \partial_t p(t, x, y) = \frac{1}{2} \triangle_x p(t, x, y), & \forall (t, x, y) \in (0, \infty) \times D \times D \\ \partial_\nu p(t, x, y) = 0 & \forall (t, x, y) \in (0, \infty) \times \partial D \times \overline{D} \\ p(0, x, \cdot) = \delta_x & \forall x \in \overline{D} \end{cases}$$

where $\partial_{\nu} p = \nu(x) \cdot \nabla_x p(t, x, y)$. Show that if p is unique, then

$$p(t+s, x, y) = \int_{\overline{D}} p(t, x, z) p(s, z, y) \, \mathrm{d}z$$

holds for every t, s > 0 and $x, y \in D$. (Hint. differentiate both sides with s and use the uniqueness of p)

Suggestion. The hint has it backwards, the differentiation should be done with respect to t. First of all, if we denote q(t, x) = p(t + s, x, y), then

$$\begin{cases} \partial_t q(t,x) = \frac{1}{2} \triangle_x q(t,x), & \forall (t,x) \in (0,\infty) \times D \\ \partial_\nu q(t,x) = 0 & \forall (t,x) \in (0,\infty) \times \partial D \\ q(0,x) = p(s,x,y) & \forall x \in \overline{D} \end{cases}$$

If we denote

$$\widetilde{q}(t,x) = \int_{\overline{D}} p(t,x,z) p(s,z,y) \,\mathrm{d}z$$

then

$$\tilde{q}(0,x) = p(s,x,y)$$

and

$$\widetilde{q}(t,x) = \int_D p(t,x,z)p(s,z,y) \,\mathrm{d}z$$

when t > 0. Suppose t > 0. Since for every $x \in D$ the $z \mapsto \triangle_x p(t, x, z)$ is continuous and bounded function in \overline{D} we have

$$\frac{1}{2} \Delta_x \widetilde{q}(t, x) = \int_D \frac{1}{2} \Delta_x p(t, x, z) p(s, z, y) \, \mathrm{d}z$$

for $x \in D$ and t > 0. Now since p satisfies the parabolic equation,

$$\frac{1}{2} \triangle_x \tilde{q}(t, x) = \int_D \partial_t p(t, x, z) p(s, z, y) \, \mathrm{d}z$$

but again the derivative can be taken outside of the integral and we have

$$\frac{1}{2} \triangle_x \widetilde{q}(t, x) = \int_D \partial_t p(t, x, z) p(s, z, y) \, \mathrm{d}z = \partial_t \widetilde{q}(t, x)$$

for t > 0 and $x \in D$. In the same way we can move the differentiation to the normal direction inside the integration since we assumed that $x \mapsto p(t, x, y) \in C^1(\overline{D})$ and we get

$$\partial_{\nu} \tilde{q}(t,x) = \int_{D} \partial_{\nu} p(t,x,z) p(s,z,y) \, \mathrm{d}z = 0$$

for every $x \in \partial D$ and t > 0. So we see that \tilde{q} also satisfies

$$\begin{cases} \partial_t \widetilde{q}(t,x) = \frac{1}{2} \Delta_x \widetilde{q}(t,x), & \forall (t,x) \in (0,\infty) \times D \\ \partial_\nu \widetilde{q}(t,x) = 0 & \forall (t,x) \in (0,\infty) \times \partial D \\ \widetilde{q}(0,x) = p(s,x,y) & \forall x \in \overline{D} \end{cases}$$

and so $u(t, x, y) = q(t, x) - \tilde{q}(t, x)$ satisfies the homogenous equation

$$\begin{cases} \partial_t \widetilde{u}(t, x, y) = \frac{1}{2} \triangle_x \widetilde{q}(t, x, y), & \forall (t, x, y) \in (0, \infty) \times D \times D \\ \partial_\nu u(t, x) = 0 & \forall (t, x, y) \in (0, \infty) \times \partial D \times \overline{D} \\ \widetilde{u}(0, x, y) = 0 & \forall x \in \overline{D}, \forall y \in \overline{D} \end{cases}$$

By uniqueness of the equation that p solves we deduce that u(t, x, y) = 0 for $t \ge 0$, $x \in \overline{D}$ and $y \in \overline{D}$. But this implies the claim, since then $q(t, x) = \tilde{q}(t, x)$ or

$$p(t+s, x, y) = \int_{\overline{D}} p(t, x, z) p(s, z, y) \, \mathrm{d}z.$$

10. Suppose p is as in Problem 9. Show that

$$\int_{\overline{D}} p(t, x, y) \, \mathrm{d}x = 1$$

for every $t \ge 0$ and $y \in \overline{D}$.

Suggestion. Let's denote by

$$m(t) = \int_D p(t, x, y) \,\mathrm{d}x$$

for t > 0 and let $y \in D$. Then m'(t) satisfies

$$m'(t) = \int_D \partial_t p(t, x, y) \, \mathrm{d}x = \int_D \frac{1}{2} \Delta p(t, x, y) \, \mathrm{d}x$$

and by Gauß divergence theorem this is

$$\int_D \frac{1}{2} \Delta p(t, x, y) \, \mathrm{d}x = \frac{1}{2} \int_{\partial D} \partial_\nu p(t, x, y) \sigma(\mathrm{d}x) = 0.$$

Thus, m(t) = C(y) is constant in time and therefore,

$$\int_D \int_D \varphi(y) p(t, x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_D \varphi(y) C(y) \, \mathrm{d}y$$

for every t > 0 and every function φ . Since the left-hand side converges to

$$\lim_{t\downarrow 0} \cdots = \int_D \varphi(y) \, \mathrm{d} y$$

we obtain

$$\int_D C(y)\varphi(y)\,\mathrm{d}y = \int_D \varphi(y)\,\mathrm{d}y$$

or

$$\int_D (C(y) - 1)\varphi(y) \,\mathrm{d}y = 0$$

for every φ . If we choose $\varphi(y) = (C(y) - 1)$, then

$$\int_D (C(y) - 1)^2 \,\mathrm{d}y = 0$$

or C(y) = 1 for almost every $y \in D$. Since

$$1 = C(y) = m(t) = \int_D p(t, x, y) \, \mathrm{d}x$$

for almost every y and the right-hand side is continuous in y, we obtain that

$$1 = \int_D p(t, x, y) \,\mathrm{d}x$$

for every $y \in \overline{D}$.

Note that there is a potential cheating in the suggestion above, since we didn't say clearly why we could change the order or integration and differentiation (since we could potentially have that Δp is not integrable over D. A way to do this properly is to consider an increasing sequence of open sets $G_n \subset \overline{G_n} \subset D$ with smooth boundaries that become closer to the boundary of D as n grows. Then we would have

$$m(t) = \int_{G_n} p(t, x, y) \, \mathrm{d}x + \mathrm{o}(1) = m_n(t) + \mathrm{o}(1)$$

for $t < \rho$ for some fixed ρ . Now p is twice continuously differentiable in \overline{G}_n and so we can justify the differentiation under the integral by dominated convergence. Thus, by similar method

$$m'_n(t) = \int_{G_n} \frac{1}{2} \Delta_x p(t, x, y) \, \mathrm{d}x = \frac{1}{2} \int_{\partial G_n} \partial_\nu p(t, x, y) \sigma(\,\mathrm{d}y).$$

Now since we assumed that p is continuously differentiable onto the boundary and $\partial_{\nu} p(t, x, y) = 0$ on ∂D we can deduce that for large n the derivative $|m'_n(t)| < \varepsilon$ for $t < \rho$. Therefore,

$$|m_n(t) - m_n(0)| \le \varepsilon \rho$$

and combining this with $m(t) = m_n(t) + o(1)$ we can say that

$$m(t) = m_n(0) + o(1)$$

for $t < \rho$. In particular, if we choose $0 < s < \rho$, we obtain

$$m(t) - m(s) = o(1)$$

and now letting $n \to \infty$, we get m(t) = m(s) and we can proceed as before. Note also that we didn't just write m(0) = 1 since we didn't have a meaning for integral like

$$\int_{\overline{D}} \delta_x(\cdot) \, \mathrm{d}x$$

but we could interpret it via

$$\int_{\overline{D}} \varphi(y) \int_{\overline{D}} p(t, x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{\overline{D}} \int_{\overline{D}} \varphi(y) p(t, x, y) \, \mathrm{d}y \, \mathrm{d}x$$

and then using the compactness on \overline{D} and the convergence

$$\lim_{t \to 0} \int_{\overline{D}} \varphi(y) p(t, x, y) \, \mathrm{d}y = \varphi(x)$$

for every $x \in \overline{D}$. Moreover, we need φ to be continuous, and therefore, the choice $\varphi(y) = C(y) - 1$ is allowed only when C is continuous, but this follows from the continuity of p with respect to y.

11. Suppose p is as in Problem 9 and assume that p is unique. If we know in addition that $p(t, x, y) \ge 0$ for $t \ge 0$, show that p is a probability transition density of some Feller process (X_t) with the state space \overline{D} .

Suggestion. So we need to show that the transition function P_t of X is given by

$$P_t f(x) = \int_{\overline{D}} p(t, x, y) f(y) \, \mathrm{d}y.$$

For this we only need to verify that (P_t) is a Feller semigroup. From the assumption $p \ge 0$, it follows that $P_t f \le P_t g$ for every $f \le g$, since if $g \ge f$, then

$$P_t(g-f)(x) = \int_{\overline{D}} p(t,x,y)(g-f)(y) \,\mathrm{d}y \ge 0.$$

The fact that $P_t 1 = 1$ can be shown as follows. Since

$$P_t 1(x) = \int_{\overline{D}} p(t, x, y) \, \mathrm{d}y$$

we notice that $f = P_t 1$ solves the equation

$$\begin{cases} \partial_t f = \frac{1}{2} \triangle f \\ \partial_\nu f = 0 \end{cases}$$

by differentiation in the same way as in Problem 9. When t = 0, we have that $P_0 1(x) = 1$ for every $x \in \overline{D}$. The function v(t, x) = 1 solves the same equation with the same initial value $x \mapsto v(0, x) = 1$. By uniqueness, f = v, or $P_t 1(x) = 1$ for every x.

The semigroup property follows from Problem 9, since

$$\begin{split} P_{t+s}f(x) &= \int_{\overline{D}} p(t+s,x,y)f(y) \,\mathrm{d}y = \int_{\overline{D}} \int_{\overline{D}} p(t,x,z)p(s,z,y)f(y) \,\mathrm{d}z \,\mathrm{d}y \\ &= \int_{\overline{D}} p(t,x,z)P_sf(z) \,\mathrm{d}z = P_tP_sf(x) \end{split}$$

and the fact that $\lim_{t\downarrow 0} P_t f(x) = f(x)$ is the initial value assumption for the function p. The only thing to verify still is that $P_t f \in C_{\infty}(\overline{D})$ when $f \in C_{\infty}(\overline{D})$. Since \overline{D} is compact, this is equivalent with $P_t f \in C(\overline{D})$ when $f \in C(\overline{D})$. But this follows since $x \mapsto p(t, x, y)$ is continuous function and so $P_t f \in C(\overline{D})$ even for every bounded and measurable $f: \overline{D} \to \mathbb{R}$.