Department of Mathematics and Statistics

Stochastic processes on domains

Suggestions to excercise problem sheet 5

Note. In the Problems 1-12 the j, k and n are always integers.

1. Suppose M and N are bounded martingales and M and N are independent. Show that

$$
\langle M, N\rangle=0
$$

Suggestion. We should also assume that M and/or N is continuous. So let's suppose that both of them is continuous. Now

$$
\langle M, N\rangle=\frac{1}{4}(\langle M+N, M+N\rangle-\langle M-N, M-N\rangle)
$$

Since we know form lectures that

$$
\left.\langle M \pm N, M \pm N\rangle_{t}=\lim _{\left(t_{1}, \ldots, t_{n}\right)} \sum_{k}\left(M_{t_{k+1}} \pm N_{t_{k+1}}\right)-\left(M_{t_{k}} \pm N_{t_{k}}\right)\right)^{2}
$$

in probability where the $0=t_{0}<t_{1}<\cdots<t_{n}=t$ is some division such that limit means that $\sup _{k}\left|t_{k+1}-t_{k}\right| \rightarrow 0$, we can deduce that

$$
\langle M, N\rangle_{t}=\lim _{\left(t_{1}, \ldots, t_{n}\right)} \sum_{k}\left(M_{t_{k+1}}-M_{t_{k}}\right)\left(N_{t_{k+1}}-N_{t_{k}}\right) .
$$

So if we can show that the sum on the right-hand side goes to zero in the limit we are done. Let's denote $\widetilde{M}_{k}:=\left(M_{t_{k+1}}-M_{t_{k}}\right)$ and $\widetilde{N}_{k}:=\left(N_{t_{k+1}}-N_{t_{k}}\right)$ and thus the claim is to show that

$$
\lim _{\left(t_{1}, \ldots, t_{n}\right)} \mathbf{P}\left(\sum_{k} \widetilde{M}_{k} \widetilde{N}_{k}>\varepsilon\right)=0
$$

for every $\varepsilon>0$. One way to show this is to show that $\lim \mathbf{E}\left(\sum \ldots\right)^{2}=0$, since then the claim follows by Chebysev's inequality. So let's try to compute the second moment of the sum

$$
\mathbf{E}\left(\sum_{k} \widetilde{M}_{k} \widetilde{N}_{k}\right)^{2}=\mathbf{E} \sum_{k, l} \widetilde{M}_{k} \widetilde{M}_{l} \widetilde{N}_{k} \widetilde{N}_{l}=\sum_{k, l} \mathbf{E}\left(\widetilde{M}_{k} \widetilde{M}_{l}\right) \mathbf{E}\left(\widetilde{N}_{k} \widetilde{N}_{l}\right)
$$

where we used the independence of M and N. If we have $k>l$, then

$$
\mathbf{E} \widetilde{M}_{k} \widetilde{M}_{l}=\mathbf{E} \widetilde{M}_{l} \mathbf{E}\left(\widetilde{M}_{l} \mid \mathscr{F}_{t_{l}}\right)=0
$$

since M is a martingale. The same is true, when $k<l$, and for terms with N as well, so

$$
\mathbf{E}\left(\sum_{k} \widetilde{M}_{k} \widetilde{N}_{k}\right)^{2}=\mathbf{E} \sum_{k, l} \widetilde{M}_{k} \widetilde{M}_{l} \widetilde{N}_{k} \widetilde{N}_{l}=\sum_{k} \mathbf{E} \widetilde{M}_{k}^{2} \mathbf{E} \widetilde{N}_{k}^{2}
$$

Since

$$
\mathbf{E} \widetilde{M}_{k}^{2}=\mathbf{E} M_{t_{k+1}}^{2}+\mathbf{E} M_{t_{k}}^{2}-2 \mathbf{E} M_{t_{k}} M_{t_{k+1}}
$$

and since M is a martingale

$$
\mathbf{E} M_{t_{k}} M_{t_{k+1}}=\mathbf{E} M_{t_{k}}^{2}+\mathbf{E} M_{t_{k}} \mathbf{E}\left(M_{t_{k+1}}-M_{t_{k}} \mid \mathscr{F}_{t_{k}}\right)=\mathbf{E} M_{t_{k}}^{2}
$$

we have that

$$
\mathbf{E} \widetilde{M}_{k}^{2}=\mathbf{E} M_{t_{k+1}}^{2}-\mathbf{E} M_{t_{k}}^{2}
$$

and the same holds for N. We use a trivial estimate $\mathbf{E} \widetilde{N}_{k}^{2} \leq \max _{k} \mathbf{E} \widetilde{N}_{k}^{2}=: \rho$ and thus

$$
\sum_{k} \mathbf{E} \widetilde{M}_{k}^{2} \mathbf{E} \widetilde{N}_{k}^{2} \leq \rho \sum_{k} \mathbf{E} \widetilde{M}_{k}^{2}=\rho\left(\mathbf{E} M_{t_{n}}^{2}-\mathbf{E} M_{0}^{2}\right)
$$

where we could compute the sum, since it was telescoping sum. Since M is bounded martingale we have that $\mathbf{E} M_{t}^{2} \leq K<\infty$ and so

$$
\sum_{k} \mathbf{E} \widetilde{M}_{k}^{2} \mathbf{E} \widetilde{N}_{k}^{2} \leq \rho K=K \max _{k} \mathbf{E} \widetilde{N}_{k}^{2}=K \max _{k}\left(\mathbf{E} N_{t_{k+1}}^{2}-\mathbf{E} N_{t_{k}}^{2}\right)
$$

We are almost done, since we assumed that N is bounded and continuous and thus, the function $s \mapsto \mathbf{E} N_{s}^{2}$ is continuous. On a bounded interval $[0, t]$ it is even uniformly continuous and thus

$$
\max _{k}\left(\mathbf{E} N_{t_{k+1}}^{2}-\mathbf{E} N_{t_{k}}^{2}\right) \leq \varepsilon / K
$$

whenever the the maximum distance $\max _{k}\left|t_{k+1}-t_{k}\right|$ is small enough. All in all,

$$
\mathbf{E}\left(\sum_{k} \widetilde{M}_{k} \widetilde{N}_{k}\right)^{2} \leq \varepsilon
$$

whenever the the maximum distance $\max _{k}\left|t_{k+1}-t_{k}\right|$ is small enough and especially,

$$
\limsup _{\left(t_{1}, \ldots, t_{n}\right)} \mathbf{E}\left(\sum_{k} \widetilde{M}_{k} \widetilde{N}_{k}\right)^{2} \leq \varepsilon
$$

holds for every $\varepsilon>0$. This implies the claim.
2. Suppose f is a continuous function on the boundary of a ball $D_{r}(x)$ and η is the first exist time from the ball $D_{r}(x)$. Show that

$$
\mathbf{E}_{x} f\left(B_{\eta}\right)=\int f(y) \mu(\mathrm{d} y)
$$

where μ is the normalised surface measure of the sphere $\partial D_{r}(x)$. (Hint: if f is an indicator function, show that the μ has to rotation invariant. You may assume that you know that then it must be the surface measure)
Suggestion. Let's denote the boundary $\partial D_{r}(x)$ by Γ, i.e. $\Gamma=\partial D_{r}(x)$ and the ball $D_{r}(x)$ by G. let's denote the mapping that the left-hand side induces by Λ, i.e. $\Lambda=f \mapsto \mathbf{E}_{x} f\left(B_{\eta}\right)$.

When $f=[A]$ for some set $A \subset \Gamma$, we will denote

$$
\lambda(A)=\Lambda([A])
$$

When $f(y)=[y \in \Gamma]$, then the left-hand side is one, i.e. $\lambda(\Gamma)=1$.
If $\left(A_{k}\right) \subset \mathscr{B}(\Gamma)$ are Borel sets on Γ and $A_{k} \cap A_{j}=\emptyset$ for $k \neq j$, we notice that

$$
\Lambda\left(\left[\bigcup_{k} A_{k}\right]\right)=\sum_{k=1}^{\infty} \Lambda\left[A_{k}\right]
$$

i.e.

$$
\lambda\left(\bigcup_{k} A_{k}\right)=\sum_{k=1}^{\infty} \lambda\left(A_{k}\right)
$$

and thus, λ is a Borel probability measure on Γ. By linearity of Λ we first deduce for simple functions $f=\sum_{k} a_{k}\left[A_{k}\right]$ that

$$
\Lambda f=\int_{\Gamma} f(y) \lambda(\mathrm{d} y)
$$

Moreover, by monotone convergence we may deduce that

$$
\mathbf{E}_{x} f\left(B_{\eta}\right)=\Lambda f=\int_{\Gamma} f(y) \lambda(\mathrm{d} y)
$$

for every bounded Borel measurable f on Γ. Therefore, the claim follows if we can show that $\lambda=\mu$ which follows by showing that λ is rotation invariant, i.e. $\lambda(R A)=\lambda(A)$ for every rotation R around x.

Now $\lambda(R A)=\mathbf{E}_{x}\left[B_{\eta} \in R A\right]=\mathbf{P}_{x}\left(R^{-1} B_{\eta} \in A\right)$. Since $X_{t}=R^{-1} B_{t}$ is a Brownian motion starting from x whenever B is a Brownian motion starting from x and if η^{\prime} is the first exit time of X from the ball G, then by rotation symmetry of Brownian motion we notice that (η, B) has the same law than $\left(\eta^{\prime}, X\right)$. Therefore,

$$
\mathbf{P}_{x}\left(R^{-1} B_{\eta} \in A\right)=\mathbf{P}_{x}\left(X_{\eta^{\prime}} \in A\right)=\mathbf{P}_{x}\left(B_{\eta} \in A\right)
$$

or $\lambda(R A)=\lambda(A)$.
3. Suppose $w(x)=\mathbf{E}_{x} w\left(B_{\eta}\right)$ as in the proof of Lemma 7.5. Show that

$$
w(x)=\int_{D_{r}(x)} w(y) \varphi(|y-x|) \mathrm{d} y
$$

for every $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{+}$such that $\int \varphi(t) \mathrm{d} t=1$ and $\varphi(t)=0$ outside interval $(r / 2, r)$. (Hint. use Problem 2. and Fubini to the right-hand side to separate w and φ.)
Suggestion. First: the claim of this is problem is not entirely correct, so you'll get this for free. But let's show this and correct the claim in the end. By problem 2.

$$
w(x) \varphi(t)=\int_{\partial D_{t}(x)} \varphi(t) w(y) \mu_{t}(\mathrm{~d} y)
$$

for every $t>0$ small enough. We can integrate this identity over t from 0 to r and we obtain

$$
w(x) \int_{0}^{r} \varphi(t) \mathrm{d} t=\int_{0}^{r} \int_{\partial D_{t}(x)} \varphi(t) w(y) \mu_{t}(\mathrm{~d} y) \mathrm{d} t
$$

The integral on the left hand side is 1 so the left-hand side is $w(x)$. The integral on the right for fixed $t>0$ is

$$
\int_{\partial D_{t}(x)} \varphi(|y-x|) w(y) t^{-(d-1)} \mu_{t}(\mathrm{~d} y)
$$

The measure μ_{t} is the normalised surface measure of the sphere of radius t, so

$$
\mu_{t}\left(\partial D_{t}\right)=\sigma\left(\partial D_{t}\right) t^{-(d-1)}
$$

where σ is the surface measure. By Fubini's theorem and representation with polar coordinates we know that

$$
\int_{0}^{r} \int_{\partial D_{t}(x)} f(t, y) \sigma(\mathrm{d} y) \mathrm{d} t=\int_{D_{r}(x)} f(|y-x|, y) \mathrm{d} y
$$

for every f so

$$
\int_{0}^{r} \int_{\partial D_{t}(x)} f(t, y) \mu_{t}(\mathrm{~d} y) \mathrm{d} t=\int_{D_{r}(x)} f(|x-y|, y)|y-x|^{-(d-1)} \mathrm{d} y .
$$

Combining these we obtain that

$$
w(x)=\int_{D_{r}(x)} \varphi(|x-y|)|x-y|^{-(d-1)} w(y) \mathrm{d} y=\int_{D_{r}(x)} \psi(|x-y|) w(y) \mathrm{d} y
$$

which is the correct claim. Notice that since $\varphi(|x-y|)=0$ for every $|y-x|<r / 2$, the $\psi(t)=\varphi(t) t^{-(d-1)}$ is C^{∞}-function as well.

In other words, the claim should be corrected so that

$$
\int_{0}^{\infty} t^{d-1} \varphi(t) \mathrm{d} t=1
$$

4. Suppose $w(x)=\mathbf{E}_{x} w\left(B_{\eta}\right)$ as in the proof of Lemma 7.5. Show that w is $C^{\infty}(G)$. (Hint. use previous problem 3. and differentiate. You may assume the existence of C^{∞} functions that vanish outside $(r / 2, r)$.
Suggestion. Let $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a C^{∞}-function that vanish outside the interval $(r / 2, r)$ and that $\int \varphi(t) t^{d-1} \mathrm{~d} t=1$. By Problem 3. we know that

$$
\begin{equation*}
w(x)=\int_{\mathbb{R}^{d}} \varphi(|x-y|) w(y) \mathrm{d} y . \tag{*}
\end{equation*}
$$

According to Lemma 7.5. we know that w is bounded, so using the dominated convergence theorem to identity $(*)$, we can deduce that w is continuous, since

$$
w\left(x_{n}\right)=\int_{\mathbb{R}^{d}} \varphi\left(\left|x_{n}-y\right|\right) w(y) \mathrm{d} y \rightarrow \int_{\mathbb{R}^{d}} \varphi(|x-y|) w(y) \mathrm{d} y=w(x) .
$$

In the same way, we can compute the first order differences

$$
h^{-1}\left(w\left(x+h e_{j}\right)-w(x)\right)=\int_{\mathbb{R}^{d}} h^{-1}\left(\varphi\left(\left|x+h e_{j}-y\right|\right)-\varphi(|x-y|)\right) w(y) \mathrm{d} y
$$

Now

$$
\varphi\left(\left|x+h e_{j}-y\right|\right)-\varphi(|x-y|)=\rho(h)-\rho(0)=h \rho^{\prime}(0)+\mathrm{o}(h)
$$

when $\rho(t)=\varphi\left(\left|x-y+t e_{j}\right|\right)$. Since

$$
\rho^{\prime}(0)=\varphi^{\prime}(|x-y|)\left(x_{j}-y_{j}\right)|x-y|^{-1}
$$

we see that $\varphi_{j}(x, y):=\varphi^{\prime}(|x-y|)\left(x_{j}-y_{j}\right)|x-y|^{-1}$ is a continuous function that vanish when $|x-y|<r / 2$ or $|x-y|>r$. Thus we may again use the dominated convergence theorem and we obtain that

$$
\partial_{j} w(x)=\int_{\mathbb{R}^{d}} \varphi_{j}(x, y) w(y) \mathrm{d} y
$$

and therfore, $w \in C^{1}(G)$. We can repeat this as many times as we wish and we obtain that

$$
\partial_{j_{1} \ldots j_{N}} w(x)=\int_{\mathbb{R}^{d}} \varphi_{j_{1}, \ldots, j_{N}}(x, y) w(y) \mathrm{d} y
$$

for some C^{∞}-function $\varphi_{j_{1}, \ldots, j_{N}}$ that is supported on $r / 2<|x-y|<r$. This implies the claim.
5. Show that the for every $z \in G$

$$
\mathbf{P}_{z}(\tau \leq t)=\lim _{n \rightarrow \infty} \mathbf{E}_{z} \mathbf{P}_{B\left(n^{-1}\right)}\left(\tau \leq t-n^{-1}\right)
$$

and that $z \mapsto \mathbf{E}_{z} \mathbf{P}_{B\left(n^{-1}\right)}\left(\tau \leq t-n^{-1}\right)$ is continuous (even $\left.C^{\infty}\right)$ for every n. (Hint. Markov property and the transition probability density.)
Suggestion. Let's start with the identity

$$
A:=\{\tau \leq t\}=\{\exists s \in(0, t]: B(s) \notin G\} .
$$

The reason that this holds is that if $\tau>t$, then $B(s) \in G$ for every $s \in(0, t]$. On the other hand, if $B(s) \in G$ for every $s \in(0, t]$ then since G is open and B is continuous, there exists a $s^{\prime}>t$ such that $B(u) \in G$ for every $u \in\left(0, s^{\prime}\right)$ and so $\tau \geq s^{\prime}>t$.

This identity can be expanded written as a union of increasing events, namely

$$
A=\bigcup_{n=1}^{\infty} A_{n}:=\bigcup_{n=1}^{\infty}\left\{\exists s \in\left(n^{-1}, t\right]: B(s) \notin G\right\} .
$$

Therefore,

$$
\mathbf{P}_{z}(A)=\lim _{n \rightarrow \infty} \mathbf{P}_{z}\left(A_{n}\right)=\lim _{n \rightarrow \infty} \mathbf{E}_{z} \mathbf{P}_{z}\left(A_{n} \mid \mathscr{F}_{h}\right)
$$

where $h=n^{-1}$. The conditional probability on the right is by Markov property

$$
\mathbf{P}_{z}\left(A_{n} \mid \mathscr{F}_{h}\right)=\mathbf{P}_{B_{h}}\left(\exists s \in(0, t-h]: B_{s} \notin G\right)=\mathbf{P}_{B_{h}}(\tau \leq t-h)
$$

Therefore,

$$
\mathbf{P}_{z}(\tau \leq t)=\lim _{n \rightarrow \infty} \mathbf{E}_{z} \mathbf{P}_{B_{h}}(\tau \leq t-h)
$$

which gives the first claim.
Let's denote $A_{n}=\{\tau \leq t-h\}$. The second claim is to show that $f_{n}=z \mapsto$ $\mathbf{E}_{z} \mathbf{P}_{B_{h}}\left(A_{n}\right)$ is a continuous function (even in \mathbb{R}^{d}). Now since $g_{n}=y \mapsto \mathbf{P}_{y}\left(A_{n}\right)$ is measurable and bounded by 1 , we can rewrite the function f_{n} as $f_{n}(z)=\mathbf{E}_{z} g_{n}\left(B_{h}\right)$ and since $h>0$ we can express this with the help of the transition probability density of Brownian motion, i.e.

$$
f_{n}(z)=\mathbf{E}_{z} g_{n}\left(B_{h}\right)=\int_{\mathbb{R}^{d}} g_{n}(y) p(h, z, y) \mathrm{d} y .
$$

If $z_{k} \rightarrow z$, then

$$
\left|f_{n}(z)-f_{n}\left(z_{k}\right)\right| \leq \int_{\mathbb{R}^{d}}\left|p(h, z, y)-p\left(h, z_{k}, y\right)\right| \mathrm{d} y
$$

THe right-hand side has an integrable majorant and since since $z \mapsto p(h, z, y)$ is continuous for every $y \in \mathbb{R}^{d}$ we deduce with dominated convergence theorem that f_{n} is continuous.

Note that it was important to move the Brownian motion first a bit to B_{h} since even though $\mathbf{P}_{z}(\tau \leq t)=\mathbf{E}_{z} \mathbf{P}_{B_{0}}(\tau \leq t)=\mathbf{E}_{z} g_{\infty}\left(B_{0}\right)$ formally in the same way, the latter expression cannot be written with the help of transition probability density, since at time $t=0$ the Brownian motion does not have one.

Moreover, this does not mean that $z \mapsto \mathbf{P}_{z}(\tau \leq t)$ would be continuous.
6. Show that the for every $x \in \partial G$ and every $\left(x_{n}\right) \subset G$ such that $x_{n} \rightarrow x$ it holds that

$$
\mathbf{P}_{x}(\tau \leq t) \leq \liminf _{n \rightarrow \infty} \mathbf{P}_{x_{n}}(\tau \leq t)
$$

(Hint: use Problem 5 to deduce this lower semicontinuity property by approximating from below by continuous functions)
Suggestion. Let's denote $f_{n}(z)=\mathbf{E}_{z} \mathbf{P}_{B_{h}}\left(A_{n}\right)$ as in the suggestion for the Problem 5 and let $\left(x_{k}\right)$ and x be as in the claim of the problem. Moreover, let's denote $f(z)=\mathbf{P}_{z}(\tau \leq t)$. We showed that for every x_{k} it holds that

$$
f\left(x_{k}\right)=\lim _{n \rightarrow \infty} f_{n}\left(x_{k}\right)
$$

and that f_{n} are continuous functions. In addition we showed that $f_{n}(z) \uparrow f(z)$ for every z. Therefore,

$$
\liminf _{k \rightarrow \infty} f\left(x_{k}\right) \geq \liminf _{k \rightarrow \infty} f_{n}\left(x_{k}\right)=f_{n}(x)
$$

since f_{n} is continuous and $x_{k} \rightarrow x$. Moreover, since $f_{n} \uparrow f$, the definition of the supremem implies that

$$
\liminf _{k \rightarrow \infty} f\left(x_{k}\right) \geq \sup _{n} f_{n}(x)=f(x)
$$

and the claim follows.
7. Show that if x is a regular point on the boundary and $\left(x_{n}\right) \subset G$ such that $x_{n} \rightarrow x$, then

$$
\mathbf{P}_{x_{n}}(\tau \leq t)=1
$$

for every $t>0$. (Hint. Problem 6.)
Suggestion. First the claim is missing the limit and the real claim is

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{x_{n}}(\tau \leq t)=1
$$

For this we only need to apply Problem 6 which says that

$$
1 \geq \limsup _{n \rightarrow \infty} \mathbf{P}_{x_{n}}(\tau \leq t) \geq \liminf _{n \rightarrow \infty} \mathbf{P}_{x_{n}}(\tau \leq t) \geq \mathbf{P}_{x}(\tau \leq t) \geq \mathbf{P}_{x}(\tau=0)=1
$$

by the regularity of the point $x \in \partial G$. This implies that

$$
1=\liminf \mathbf{P}_{x_{n}}(\tau \leq t)=\limsup \mathbf{P}_{x_{n}}(\tau \leq t)
$$

which shows that the limit exists and is 1 .
8. Show that 0 is a regular point of $(0,1)$ for 1 -dimensional Brownian motion without using flat cone condition. (Hint. Blumenthal 0-1 -law).
Suggestion. First we notice that

$$
\mathbf{P}_{0}(\tau=0)=\lim _{t \downarrow 0} \mathbf{P}_{0}(\tau \leq t)
$$

Since $\mathbf{P}_{0}(\tau \leq t)=\mathbf{P}_{0}\left(B_{t} \leq 0\right)+\mathbf{P}_{0}\left(B_{t}>0, \tau<\tau\right) \geq \mathbf{P}_{0}\left(B_{t} \leq 0\right)=\frac{1}{2}$, we have that

$$
\mathbf{P}_{0}(\tau=0) \geq \frac{1}{2}
$$

By Blumenthal 0-1 -law, this implies that $\mathbf{P}_{0}(\tau=0)=1$ which implies the claim.
9. Prove the Blumenthal's 0-1 -law. i.e. show that when \mathscr{F}_{0} is augmented history of Brownian motion, then if $A \in \mathscr{F}_{0^{+}}=\mathscr{F}_{0}$, we either have $\mathbf{P}_{x}(A)=0$ or $\mathbf{P}_{x}(A)=1$. (Hint. consider the random variable $[A][A]$ and use Markov property to deduce that $\left.\mathbf{E}_{x}[A][A]=\mathbf{P}_{x}(A)^{2}.\right)$
Suggestion. Let's follow the hint and compute $\mathbf{E}_{x}[A][A]$ for $A \in \mathscr{F}_{0}$ in two ways. Since $[A][A]=[A]$, we have that $\mathbf{E}_{x}[A][A]=\mathbf{P}_{x}(A)$. On the other hand, the Markov property and the \mathscr{F}_{0}-measurability of $[A]$ imply that

$$
\begin{aligned}
\mathbf{E}_{x}[A][A] & =\mathbf{E}_{x}[A] \mathbf{P}_{x}\left(A \mid \mathscr{F}_{0}\right)=\mathbf{E}_{x}[A] \mathbf{P}_{B_{0}}(A)=\mathbf{E}_{x}[A] \mathbf{P}_{x}(A) \\
& =\left(\mathbf{P}_{x}(A)\right)^{2}
\end{aligned}
$$

Therefore, we obtain an equation $\mathbf{P}_{x}(A)=\mathbf{P}_{x}(A)^{2}$ for every $A \in \mathscr{F}_{0}$. This second order polynomial equation $\alpha=\alpha^{2}$ only has two solutions $\alpha=0$ and $\alpha=1$ and the claim follows.
10. Suppose $\frac{1}{2} \triangle u=g$ in domain G. If u is $C^{2}(G)$ and g is bounded, show that

$$
Z_{t}=u\left(B_{t}\right)-\int_{0}^{t} g\left(B_{s}\right) \mathrm{d} s
$$

is a continuous local martingale in $[0, \tau)$ for every starting point x.
Suggestion. The tool we have is Itō, so let's use it to $X_{t}=u\left(B_{t}\right)$. Since u is in $C^{2}(G)$, then $X_{t}^{\tau^{\prime}}$ is in G for every stopping time $\tau^{\prime}<\tau$ and the following is well defined

$$
X_{t}^{\tau^{\prime}}=X_{0}+\int_{0}^{t \wedge \tau^{\prime}} \nabla u\left(B_{s}\right) \cdot \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t \wedge \tau^{\prime}} \Delta u\left(B_{s}\right) \mathrm{d} s
$$

Since $\frac{1}{2} \triangle u\left(B_{s}\right)=g\left(B_{s}\right)$ for every $s \leq \tau^{\prime}$ we obtain that

$$
Z_{t}^{\tau^{\prime}}=X_{t}^{\tau^{\prime}}-\int_{0}^{t \wedge \tau^{\prime}} g\left(B_{s}\right) \mathrm{d} s=u\left(B_{0}\right)+\int_{0}^{t \wedge \tau^{\prime}} \nabla u\left(B_{s}\right) \cdot \mathrm{d} B_{s}
$$

Now let $G_{n} \subset G$ be an open set such that $G_{n} \subset G_{n+1}$ and $\bar{G}_{n} \subset G$ and $\cup G_{n}=G$. Let τ_{n} be the first exit time from G_{n}.

Let $x \in G$ and so there is an N such that $x \in G_{N}$. By the continuity of the Brownian motion, we observe that $\tau_{n} \uparrow \tau$ for \mathbf{P}_{x}-almost surely. Moreover, $\tau_{n}<\tau$ for $n>N$ for $\mathbf{P}_{x^{-}}$-almost surely.

Why we introduced these sets G_{n} ? Namely, because $u \in C^{2}(G)$ the ∇u is bounded in \bar{G}_{n} for every n. Note that we didn't assume this from the beginning. This implies now that

$$
Z_{t}^{\tau_{n}}=u(x)+\int_{0}^{t \wedge \tau_{n}} \nabla u\left(B_{s}\right) \cdot \mathrm{d} B_{s}
$$

is a bounded martingale for starting point x. Therefore, Z is a continuous local martingale on $[0, \tau)$.
11. Suppose $\frac{1}{2} \triangle u=q u$ in domain G. If u is $C^{2}(G)$ and $q \leq 0$, show that

$$
Z_{t}=u\left(B_{t}\right) e^{-\int_{0}^{t} q\left(B_{s}\right) \mathrm{d} s}
$$

is a continuous local martingale in $[0, \tau)$ for every starting point x.
Suggestion. A misprint again, since we want $q \geq 0$. Let $f(x, y)=u(x) e^{-y}$ and define

$$
A_{t}=\int_{0}^{t} q\left(B_{s}\right) \mathrm{d} s
$$

This is an increasing process, since $q \geq 0$ on the interval $[0, \tau)$. Moreover, $\mathrm{d} A_{t}=$ $q\left(B_{t}\right) \mathrm{d} t$. Now if we apply Ito to $Z_{t}=f\left(B_{t}, A_{t}\right)$, we get that

$$
Z_{t}=Z_{0}+\int_{0}^{t} \nabla u\left(B_{s}\right) e^{-A_{s}} \mathrm{~d} B_{s}-\int_{0}^{t} u\left(B_{s}\right) q\left(B_{s}\right) \mathrm{d} s+\frac{1}{2} \int_{0}^{t} \triangle u\left(B_{s}\right) \mathrm{d} s
$$

for every $t<\tau$. As in Problem 10. we could make this more rigorous by looking at G_{n} 's and τ_{n} 's so that we can be sure that all the integrals on the right are well defined. But all in all, when $s<t<\tau$, the term $-u\left(B_{s}\right) q\left(B_{s}\right)=\frac{1}{2} \triangle u\left(B_{s}\right)$ vanishes by assumption and the only thing that is left is a stochastic integral with respect to a continuous local martingale on $[0, \tau)$. Thus, the claim follows.
12. Suppose $\frac{1}{2} \triangle u=g$ in domain G and $u=f$ on ∂G. If u is $C^{2}(G)$ and it is continuous in \bar{G}, and f is bounded, show that

$$
u(x)=\mathbf{E}_{x} f\left(B_{\tau}\right)-\mathbf{E}_{x} \int_{0}^{\tau} g\left(B_{s}\right) \mathrm{d} s
$$

Suggestion. It should be added that G is bounded as we have had throughout the lectures. Then $\mathbf{E}_{x} \tau<\infty$ as we have seen before. Borrowing from the suggestion for Problem 10. we have that $Z^{\tau_{n}}$ is a bounded martingale. Therefore,

$$
\mathbf{E}_{x} Z_{\tau_{n}}^{\tau_{n}}=\mathbf{E}_{x} Z_{0}^{\tau_{n}}
$$

for every $n>N$ when $x \in G_{N}$. This means that

$$
\mathbf{E}_{x} Z_{0}=\mathbf{E}_{x} u\left(B_{0}\right)=u(x)
$$

is equal to

$$
\mathbf{E}_{x} Z_{\tau_{n}}^{\tau_{n}}=\mathbf{E}_{x} u\left(B_{\tau_{n}}\right)-\mathbf{E}_{x} \int_{0}^{\tau_{n}} g\left(B_{s}\right) \mathrm{d} s
$$

for every $n>N$. This implies that

$$
u(x)=\lim _{n \rightarrow \infty}\left(\mathbf{E}_{x} u\left(B_{\tau_{n}}\right)-\mathbf{E}_{x} \int_{0}^{\tau_{n}} g\left(B_{s}\right) \mathrm{d} s\right)
$$

Since u is continuous in \bar{G} and B is continuous and $\tau_{n} \uparrow \tau$, the first limit is

$$
\lim _{n \rightarrow \infty} \mathbf{E}_{x} u\left(B_{\tau_{n}}\right)=\mathbf{E}_{x} u\left(B_{\tau}\right)=\mathbf{E}_{x} f\left(B_{\tau}\right)
$$

by the dominated convergence theorem and the fact that $u=f$ on the boundary. Moreover, since

$$
\left|\left[s \leq \tau_{n}\right] g\left(B_{s}\right)\right| \leq[s \leq \tau]\|g\|_{\infty}
$$

and

$$
\mathbf{E}_{x} \int{ }_{0}^{\infty}[s \leq \tau]\|g\|_{\infty}=\|g\|_{\infty} \mathbf{E}_{x} \tau<\infty
$$

we may again use dominated convergence and

$$
\lim _{n \rightarrow \infty} \mathbf{E}_{x} \int_{0}^{\tau_{n}} g\left(B_{s}\right) \mathrm{d} s=\mathbf{E}_{x} \int_{0}^{\infty} \lim _{n \rightarrow \infty}\left[s \leq \tau_{n}\right] g\left(B_{s}\right) \mathrm{d} s
$$

Since $\tau_{n}<\tau$ and $\tau_{n} \uparrow \tau$, we can compute this limit exactly and we obtain

$$
\lim _{n \rightarrow \infty}\left[s \leq \tau_{n}\right]=[s<\tau]
$$

and this gives the claim.

