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Stochastic processes on domains

Suggestions to excercise problem sheet 5

Note. In the Problems 1-12 the j,k and n are always integers.

1. Suppose M and N are bounded martingales and M and N are independent. Show

that

〈M,N 〉 = 0.

Suggestion. We should also assume that M and/or N is continuous. So let’s

suppose that both of them is continuous. Now

〈M,N 〉 = 1
4(〈M +N,M +N 〉 − 〈M −N,M −N 〉)

Since we know form lectures that

〈M ±N,M ±N 〉t = lim
(t1,...,tn)

∑
k

(Mtk+1 ±Ntk+1)− (Mtk ±Ntk))2

in probability where the 0 = t0 < t1 < · · · < tn = t is some division such that limit

means that supk|tk+1 − tk| → 0, we can deduce that

〈M,N 〉t = lim
(t1,...,tn)

∑
k

(Mtk+1 −Mtk)(Ntk+1 −Ntk).

So if we can show that the sum on the right-hand side goes to zero in the limit we

are done. Let’s denote M̃k := (Mtk+1 −Mtk) and Ñk := (Ntk+1 − Ntk) and thus the

claim is to show that

lim
(t1,...,tn)

P
(∑

k

M̃kÑk > ε

)
= 0

for every ε > 0. One way to show this is to show that lim E (∑ . . . )2 = 0, since

then the claim follows by Chebysev’s inequality. So let’s try to compute the second

moment of the sum

E
(∑

k

M̃kÑk

)2
= E

∑
k,l

M̃kM̃lÑkÑl =
∑
k,l

E (M̃kM̃l) E (ÑkÑl)

where we used the independence of M and N . If we have k > l, then

E M̃kM̃l = E M̃lE
(
M̃l |Ftl

)
= 0



since M is a martingale. The same is true, when k < l, and for terms with N as

well, so

E
(∑

k

M̃kÑk

)2
= E

∑
k,l

M̃kM̃lÑkÑl =
∑
k

E M̃2
k E Ñ2

k .

Since

E M̃2
k = EM2

tk+1
+ EM2

tk
− 2EMtkMtk+1

and since M is a martingale

EMtkMtk+1 = EM2
tk

+ EMtkE
(
Mtk+1 −Mtk |Ftk

)
= EM2

tk

we have that

E M̃2
k = EM2

tk+1
− EM2

tk

and the same holds for N . We use a trivial estimate E Ñ2
k ≤ maxk E Ñ2

k =: ρ and

thus ∑
k

E M̃2
k E Ñ2

k ≤ ρ
∑
k

E M̃2
k = ρ(EM2

tn − EM2
0 )

where we could compute the sum, since it was telescoping sum. Since M is bounded

martingale we have that EM2
t ≤ K <∞ and so∑

k

E M̃2
k E Ñ2

k ≤ ρK = K max
k

E Ñ2
k = K max

k
(EN2

tk+1
− EN2

tk
)

We are almost done, since we assumed that N is bounded and continuous and thus,

the function s 7→ EN2
s is continuous. On a bounded interval [0, t] it is even uniformly

continuous and thus

max
k

(EN2
tk+1
− EN2

tk
) ≤ ε/K

whenever the the maximum distance maxk|tk+1 − tk| is small enough. All in all,

E
(∑

k

M̃kÑk

)2
≤ ε

whenever the the maximum distance maxk|tk+1 − tk| is small enough and especially,

lim sup
(t1,...,tn)

E
(∑

k

M̃kÑk

)2
≤ ε

holds for every ε > 0. This implies the claim.

2. Suppose f is a continuous function on the boundary of a ball Dr(x) and η is the

first exist time from the ball Dr(x). Show that

Ex f(Bη) =
ˆ
f(y)µ( dy)



where µ is the normalised surface measure of the sphere ∂Dr(x). (Hint: if f is an

indicator function, show that the µ has to rotation invariant. You may assume that

you know that then it must be the surface measure)

Suggestion. Let’s denote the boundary ∂Dr(x) by Γ, i.e. Γ = ∂Dr(x) and the

ball Dr(x) by G. let’s denote the mapping that the left-hand side induces by Λ, i.e.

Λ = f 7→ Ex f(Bη) .

When f = [A ] for some set A ⊂ Γ, we will denote

λ(A) = Λ([A ]).

When f(y) = [ y ∈ Γ ], then the left-hand side is one, i.e. λ(Γ) = 1.

If (Ak) ⊂ B(Γ) are Borel sets on Γ and Ak ∩ Aj = ∅ for k 6= j, we notice that

Λ([
⋃
k

Ak ]) =
∞∑
k=1

Λ[Ak ]

i.e.

λ(
⋃
k

Ak) =
∞∑
k=1

λ(Ak)

and thus, λ is a Borel probability measure on Γ. By linearity of Λ we first deduce

for simple functions f = ∑
k ak[Ak ] that

Λf =
ˆ

Γ
f(y)λ( dy).

Moreover, by monotone convergence we may deduce that

Ex f(Bη) = Λf =
ˆ

Γ
f(y)λ( dy)

for every bounded Borel measurable f on Γ. Therefore, the claim follows if we

can show that λ = µ which follows by showing that λ is rotation invariant, i.e.

λ(RA) = λ(A) for every rotation R around x.

Now λ(RA) = Ex [Bη ∈ RA ] = Px (R−1Bη ∈ A ). Since Xt = R−1Bt is a

Brownian motion starting from x whenever B is a Brownian motion starting from x

and if η′ is the first exit time of X from the ball G, then by rotation symmetry of

Brownian motion we notice that (η,B) has the same law than (η′, X). Therefore,

Px

(
R−1Bη ∈ A

)
= Px (Xη′ ∈ A ) = Px (Bη ∈ A )

or λ(RA) = λ(A).



3. Suppose w(x) = Exw(Bη) as in the proof of Lemma 7.5. Show that

w(x) =
ˆ
Dr(x)

w(y)ϕ(|y − x|) dy

for every ϕ : R → R+ such that
´
ϕ(t) dt = 1 and ϕ(t) = 0 outside interval (r/2, r).

(Hint. use Problem 2. and Fubini to the right-hand side to separate w and ϕ.)

Suggestion. First: the claim of this is problem is not entirely correct, so you’ll get

this for free. But let’s show this and correct the claim in the end. By problem 2.

w(x)ϕ(t) =
ˆ
∂Dt(x)

ϕ(t)w(y)µt( dy)

for every t > 0 small enough. We can integrate this identity over t from 0 to r and

we obtain

w(x)
ˆ r

0
ϕ(t) dt =

ˆ r

0

ˆ
∂Dt(x)

ϕ(t)w(y)µt( dy) dt

The integral on the left hand side is 1 so the left-hand side is w(x). The integral on

the right for fixed t > 0 is
ˆ
∂Dt(x)

ϕ(|y − x|)w(y)t−(d−1) µt( dy)

The measure µt is the normalised surface measure of the sphere of radius t, so

µt(∂Dt) = σ(∂Dt)t−(d−1)

where σ is the surface measure. By Fubini’s theorem and representation with polar

coordinates we know thatˆ r

0

ˆ
∂Dt(x)

f(t, y)σ( dy) dt =
ˆ
Dr(x)

f(|y − x|, y) dy

for every f so
ˆ r

0

ˆ
∂Dt(x)

f(t, y)µt( dy) dt =
ˆ
Dr(x)

f(|x− y|, y)|y − x|−(d−1) dy.

Combining these we obtain that

w(x) =
ˆ
Dr(x)

ϕ(|x− y|)|x− y|−(d−1)w(y) dy =
ˆ
Dr(x)

ψ(|x− y|)w(y) dy

which is the correct claim. Notice that since ϕ(|x− y|) = 0 for every |y − x| < r/2,

the ψ(t) = ϕ(t)t−(d−1) is C∞-function as well.



In other words, the claim should be corrected so that
ˆ ∞

0
td−1ϕ(t) dt = 1.

4. Suppose w(x) = Exw(Bη) as in the proof of Lemma 7.5. Show that w is C∞(G).
(Hint. use previous problem 3. and differentiate. You may assume the existence of

C∞ functions that vanish outside (r/2, r).
Suggestion. Let ϕ : R+ → R be a C∞-function that vanish outside the interval

(r/2, r) and that
´
ϕ(t)td−1 dt = 1. By Problem 3. we know that

w(x) =
ˆ
Rd

ϕ(|x− y|)w(y) dy. (∗)

According to Lemma 7.5. we know that w is bounded, so using the dominated con-

vergence theorem to identity (∗), we can deduce that w is continuous, since

w(xn) =
ˆ
Rd

ϕ(|xn − y|)w(y) dy →
ˆ
Rd

ϕ(|x− y|)w(y) dy = w(x).

In the same way, we can compute the first order differences

h−1(w(x+ hej)− w(x)) =
ˆ
Rd

h−1(ϕ(|x+ hej − y|)− ϕ(|x− y|))w(y) dy.

Now

ϕ(|x+ hej − y|)− ϕ(|x− y|) = ρ(h)− ρ(0) = hρ′(0) + o(h)

when ρ(t) = ϕ(|x− y + tej|). Since

ρ′(0) = ϕ′(|x− y|)(xj − yj)|x− y|−1

we see that ϕj(x, y) := ϕ′(|x − y|)(xj − yj)|x − y|−1 is a continuous function that

vanish when |x − y| < r/2 or |x − y| > r. Thus we may again use the dominated

convergence theorem and we obtain that

∂jw(x) =
ˆ
Rd

ϕj(x, y)w(y) dy

and therfore, w ∈ C1(G). We can repeat this as many times as we wish and we

obtain that

∂j1...jNw(x) =
ˆ
Rd

ϕj1,...,jN (x, y)w(y) dy



for some C∞-function ϕj1,...,jN that is supported on r/2 < |x− y| < r. This implies

the claim.

5. Show that the for every z ∈ G

Pz ( τ ≤ t ) = lim
n→∞

Ez PB(n−1)
(
τ ≤ t− n−1

)
and that z 7→ Ez PB(n−1) ( τ ≤ t− n−1 ) is continuous (even C∞) for every n. (Hint.

Markov property and the transition probability density.)

Suggestion. Let’s start with the identity

A := {τ ≤ t} = {∃s ∈ (0, t] : B(s) /∈ G}.

The reason that this holds is that if τ > t, then B(s) ∈ G for every s ∈ (0, t]. On the

other hand, if B(s) ∈ G for every s ∈ (0, t] then since G is open and B is continuous,

there exists a s′ > t such that B(u) ∈ G for every u ∈ (0, s′) and so τ ≥ s′ > t.

This identity can be expanded written as a union of increasing events, namely

A =
∞⋃
n=1

An :=
∞⋃
n=1
{∃s ∈ (n−1, t] : B(s) /∈ G}.

Therefore,

Pz (A ) = lim
n→∞

Pz (An ) = lim
n→∞

Ez Pz (An |Fh )

where h = n−1. The conditional probability on the right is by Markov property

Pz (An |Fh ) = PBh
(∃s ∈ (0, t− h] : Bs /∈ G ) = PBh

( τ ≤ t− h )

Therefore,

Pz ( τ ≤ t ) = lim
n→∞

Ez PBh
( τ ≤ t− h )

which gives the first claim.

Let’s denote An = {τ ≤ t − h}. The second claim is to show that fn = z 7→
Ez PBh

(An ) is a continuous function (even in Rd). Now since gn = y 7→ Py (An ) is

measurable and bounded by 1, we can rewrite the function fn as fn(z) = Ez gn(Bh)
and since h > 0 we can express this with the help of the transition probability density

of Brownian motion, i.e.

fn(z) = Ez gn(Bh) =
ˆ
Rd

gn(y)p(h, z, y) dy.



If zk → z, then

|fn(z)− fn(zk)| ≤
ˆ
Rd

|p(h, z, y)− p(h, zk, y)| dy.

THe right-hand side has an integrable majorant and since since z 7→ p(h, z, y) is

continuous for every y ∈ Rd we deduce with dominated convergence theorem that

fn is continuous.

Note that it was important to move the Brownian motion first a bit to Bh since

even though Pz ( τ ≤ t ) = Ez PB0 ( τ ≤ t ) = Ez g∞(B0) formally in the same way,

the latter expression cannot be written with the help of transition probability density,

since at time t = 0 the Brownian motion does not have one.

Moreover, this does not mean that z 7→ Pz ( τ ≤ t ) would be continuous.

6. Show that the for every x ∈ ∂G and every (xn) ⊂ G such that xn → x it holds

that

Px ( τ ≤ t ) ≤ lim inf
n→∞

Pxn ( τ ≤ t )

(Hint: use Problem 5 to deduce this lower semicontinuity property by approximating

from below by continuous functions)

Suggestion. Let’s denote fn(z) = Ez PBh
(An ) as in the suggestion for the Problem

5 and let (xk) and x be as in the claim of the problem. Moreover, let’s denote

f(z) = Pz ( τ ≤ t ). We showed that for every xk it holds that

f(xk) = lim
n→∞

fn(xk)

and that fn are continuous functions. In addition we showed that fn(z) ↑ f(z) for

every z. Therefore,

lim inf
k→∞

f(xk) ≥ lim inf
k→∞

fn(xk) = fn(x)

since fn is continuous and xk → x. Moreover, since fn ↑ f , the definition of the

supremem implies that

lim inf
k→∞

f(xk) ≥ sup
n
fn(x) = f(x)

and the claim follows.

7. Show that if x is a regular point on the boundary and (xn) ⊂ G such that xn → x,

then

Pxn ( τ ≤ t ) = 1



for every t > 0. (Hint. Problem 6.)

Suggestion. First the claim is missing the limit and the real claim is

lim
n→∞

Pxn ( τ ≤ t ) = 1.

For this we only need to apply Problem 6 which says that

1 ≥ lim sup
n→∞

Pxn ( τ ≤ t ) ≥ lim inf
n→∞

Pxn ( τ ≤ t ) ≥ Px ( τ ≤ t ) ≥ Px ( τ = 0 ) = 1

by the regularity of the point x ∈ ∂G. This implies that

1 = lim inf Pxn ( τ ≤ t ) = lim sup Pxn ( τ ≤ t )

which shows that the limit exists and is 1.

8. Show that 0 is a regular point of (0, 1) for 1-dimensional Brownian motion without

using flat cone condition. (Hint. Blumenthal 0-1 -law).

Suggestion. First we notice that

P0 ( τ = 0 ) = lim
t↓0

P0 ( τ ≤ t )

Since P0 ( τ ≤ t ) = P0 (Bt ≤ 0 ) + P0 (Bt > 0, τ < τ ) ≥ P0 (Bt ≤ 0 ) = 1
2 , we have

that

P0 ( τ = 0 ) ≥ 1
2

By Blumenthal 0-1 -law, this implies that P0 ( τ = 0 ) = 1 which implies the claim.

9. Prove the Blumenthal’s 0-1 -law. i.e. show that when F0 is augmented history of

Brownian motion, then if A ∈ F0+ = F0, we either have Px (A ) = 0 or Px (A ) = 1.

(Hint. consider the random variable [A ][A ] and use Markov property to deduce that

Ex [A ][A ] = Px (A )2.)

Suggestion. Let’s follow the hint and compute Ex [A ][A ] for A ∈ F0 in two ways.

Since [A ][A ] = [A ], we have that Ex [A ][A ] = Px (A ). On the other hand, the

Markov property and the F0-measurability of [A ] imply that

Ex [A ][A ] = Ex [A ]Px (A |F0 ) = Ex [A ]PB0 (A ) = Ex [A ]Px (A )
= (Px (A ))2

Therefore, we obtain an equation Px (A ) = Px (A )2 for every A ∈ F0. This second

order polynomial equation α = α2 only has two solutions α = 0 and α = 1 and the

claim follows.



10. Suppose 1
24u = g in domain G. If u is C2(G) and g is bounded, show that

Zt = u(Bt)−
ˆ t

0
g(Bs) ds

is a continuous local martingale in [0, τ) for every starting point x.

Suggestion. The tool we have is Itō, so let’s use it to Xt = u(Bt). Since u is in

C2(G), then Xτ ′
t is in G for every stopping time τ ′ < τ and the following is well

defined

Xτ ′

t = X0 +
ˆ t∧τ ′

0
∇u(Bs) · dBs + 1

2

ˆ t∧τ ′

0
4u(Bs) ds.

Since 1
24u(Bs) = g(Bs) for every s ≤ τ ′ we obtain that

Zτ ′

t = Xτ ′

t −
ˆ t∧τ ′

0
g(Bs) ds = u(B0) +

ˆ t∧τ ′

0
∇u(Bs) · dBs

Now let Gn ⊂ G be an open set such that Gn ⊂ Gn+1 and Gn ⊂ G and
⋃
Gn = G.

Let τn be the first exit time from Gn.

Let x ∈ G and so there is an N such that x ∈ GN . By the continuity of the

Brownian motion, we observe that τn ↑ τ for Px-almost surely. Moreover, τn < τ for

n > N for Px-almost surely.

Why we introduced these sets Gn ? Namely, because u ∈ C2(G) the ∇u is

bounded in Gn for every n. Note that we didn’t assume this from the beginning.

This implies now that

Zτn
t = u(x) +

ˆ t∧τn

0
∇u(Bs) · dBs

is a bounded martingale for starting point x. Therefore, Z is a continuous local

martingale on [0, τ).

11. Suppose 1
24u = qu in domain G. If u is C2(G) and q ≤ 0, show that

Zt = u(Bt)e−
´ t

0 q(Bs) ds

is a continuous local martingale in [0, τ) for every starting point x.

Suggestion. A misprint again, since we want q ≥ 0. Let f(x, y) = u(x)e−y and

define

At =
ˆ t

0
q(Bs) ds



This is an increasing process, since q ≥ 0 on the interval [0, τ). Moreover, dAt =
q(Bt) dt. Now if we apply Itō to Zt = f(Bt, At), we get that

Zt = Z0 +
ˆ t

0
∇u(Bs)e−As dBs −

ˆ t

0
u(Bs)q(Bs) ds+ 1

2

ˆ t

0
4u(Bs) ds

for every t < τ . As in Problem 10. we could make this more rigorous by looking

at Gn’s and τn’s so that we can be sure that all the integrals on the right are well

defined. But all in all, when s < t < τ , the term −u(Bs)q(Bs) = 1
24u(Bs) vanishes

by assumption and the only thing that is left is a stochastic integral with respect to

a continuous local martingale on [0, τ). Thus, the claim follows.

12. Suppose 1
24u = g in domain G and u = f on ∂G. If u is C2(G) and it is

continuous in G, and f is bounded, show that

u(x) = Ex f(Bτ ) − Ex

ˆ τ

0
g(Bs) ds

Suggestion. It should be added that G is bounded as we have had throughout the

lectures. Then Ex τ < ∞ as we have seen before. Borrowing from the suggestion

for Problem 10. we have that Zτn is a bounded martingale. Therefore,

Ex Z
τn
τn

= Ex Z
τn
0

for every n > N when x ∈ GN . This means that

Ex Z0 = Ex u(B0) = u(x)

is equal to

Ex Z
τn
τn

= Ex u(Bτn) − Ex

ˆ τn

0
g(Bs) ds

for every n > N . This implies that

u(x) = lim
n→∞

(
Ex u(Bτn) − Ex

ˆ τn

0
g(Bs) ds

)
Since u is continuous in G and B is continuous and τn ↑ τ , the first limit is

lim
n→∞

Ex u(Bτn) = Ex u(Bτ ) = Ex f(Bτ )

by the dominated convergence theorem and the fact that u = f on the boundary.

Moreover, since

|[ s ≤ τn ] g(Bs)| ≤ [ s ≤ τ ]‖ g ‖∞



and

Ex

ˆ
∞
0 [ s ≤ τ ]‖ g ‖∞ = ‖ g ‖∞Ex τ <∞

we may again use dominated convergence and

lim
n→∞

Ex

ˆ τn

0
g(Bs) ds = Ex

ˆ ∞
0

lim
n→∞

[ s ≤ τn ]g(Bs) ds .

Since τn < τ and τn ↑ τ , we can compute this limit exactly and we obtain

lim
n→∞

[ s ≤ τn ] = [ s < τ ]

and this gives the claim.


