Department of Mathematics and Statistics

Stochastic processes on domains

Suggestions to excercise problem sheet 4

1. Suppose M and N are bounded martingales. Show that

$$
\langle M, N\rangle^{\tau}=\left\langle M^{\tau}, N\right\rangle .
$$

(Hint: use uniqueness in Theorem 6.10. and Optional Stopping Theorem.)
Suggestion. Since $M N-\langle M, N\rangle$ is a continuous local martinale and since it is bounded, it is a martingale (see Problem 9, which implies that every bounded continuous local martingale is a martingale).

Therefore, we have by Optional Stopping Theorem, that

$$
\bar{M}:=M^{\tau} N^{\tau}-\langle M, N\rangle^{\tau}
$$

is a bounded martingale. We also have that

$$
M^{\tau} N-\left\langle M^{\tau}, N\right\rangle
$$

is a continuous bounded martingale and thus, if we can show that

$$
\bar{N}:=M^{\tau}\left(N-N^{\tau}\right)
$$

is a bounded martingale, then

$$
M^{\tau} N-\langle M, N\rangle^{\tau}=\bar{N}+\bar{M}
$$

is also a bounded martingale. Therefore, the uniqueness implies the claim, once we have verified that $\bar{N}:=M^{\tau}\left(N-N^{\tau}\right)$ is a martingale.

In order to show this, let η be bounded stopping time. Now

$$
\bar{N}_{\eta}=M_{\tau \wedge \eta}\left(N_{\eta}-N_{\tau \wedge \eta}\right) .
$$

If $\eta \leq \tau$, then $N_{\tau \wedge \eta}=N_{\eta}$, so the right-hand side vanishes. In other words,

$$
\bar{N}_{\eta}=[\eta>\tau] M_{\tau}\left(N_{\eta}-N_{\tau}\right) .
$$

Therefore, by taking the conditional expectation at the stopping time τ, we obtain

$$
\mathbf{E}\left(\bar{N}_{\eta} \mid \mathscr{F}_{\tau}\right)=[\eta>\tau] M_{\tau}\left(\mathbf{E}\left(N_{\eta} \mid \mathscr{F}_{\tau}\right)-N_{\tau}\right) .
$$

By Optional Stopping Theorem,

$$
[\eta>\tau] \mathbf{E}\left(N_{\eta} \mid \mathscr{F}_{\tau}\right)=[\eta>\tau] N_{\tau}
$$

so the right-hand vanishes, i.e.

$$
\mathbf{E}\left(\bar{N}_{\eta} \mid \mathscr{F}_{\tau}\right)=0
$$

which implies then that

$$
\mathbf{E} \bar{N}_{\eta}=\mathbf{E} \mathbf{E}\left(\bar{N}_{\eta} \mid \mathscr{F}_{\tau}\right)=0=\mathbf{E} \bar{N}_{0}
$$

Now Lemma 5.2. implies that \bar{N} is martingale.
2. Let N and M be continuous local martingales. Show that

$$
\langle M, N\rangle=\langle N, M\rangle
$$

(Hint: use Theorem 6.10 and uniqueness)
Suggestion. Let $A=\langle M, N\rangle$. Since $M N-A=N M-A$ and $M N-A$ is continuous local martingale, we have by uniqueness that $A=\langle N, M\rangle$.
3. Let N_{1}, N_{2} and M be continuous local martingales and $\alpha \in \mathbb{R}$. Show that

$$
\left\langle M, N_{1}+\alpha N_{2}\right\rangle=\left\langle M, N_{1}\right\rangle+\alpha\left\langle M, N_{2}\right\rangle
$$

(Hint: use Theorem 6.10 and uniqueness)
Suggestion. Let $A=\left\langle M, N_{1}\right\rangle+\alpha\left\langle M, N_{2}\right\rangle$. Since $M\left(N_{1}+\alpha N_{2}\right)-A=M N_{1}-$ $\left\langle M, N_{1}\right\rangle+\alpha M N_{2}-\alpha\left\langle M, N_{2}\right\rangle$ and the right-hand side is a continuous local martingale by Theorem 6.10, we have by uniqueness that $A=\left\langle M, N_{1}+\alpha N_{2}\right\rangle$.

Note: In the following two Problems, you may assume that it is known that

$$
K_{1} \cdot\left(K_{2} \cdot H\right)=K_{1} K_{2} \cdot H
$$

for locally bounded processes K_{1}, K_{2} and $H \in \mathscr{A}$.
4. Let K and H be locally bounded processes (Definition 6.18) and let M be a continuous local martingale. Let $Y=H \cdot M$ be a continuous local martingale. Show that

$$
K \cdot Y=K H \cdot M
$$

(Hint: take N a continuous local martingale and use Theorem 6.20 twice to express $\langle K \cdot Y, N\rangle$ as an stochastic integral with respect to a process $\langle M, N\rangle$, and then use uniqueness in Theorem 6.20).
Suggestion. Let N be a continuous local martingale. By Theorem 6.20. we have that

$$
\langle K \cdot Y, N\rangle=K \cdot\langle Y, N\rangle=K \cdot\langle H \cdot M, N\rangle=K \cdot(H \cdot\langle M, N\rangle) .
$$

Moreover, by Theorem 6.20. we also have that

$$
\langle K H \cdot M, N\rangle=K H\langle M, N\rangle .
$$

We see that the right-hand side coincides since

$$
K \cdot(H \cdot\langle M, N\rangle)=K H \cdot\langle M, N\rangle .
$$

Therefore, the left-hand side coincide, i.e.

$$
\langle K \cdot Y, N\rangle=\langle K H \cdot M, N\rangle
$$

which by the uniqueness in Theorem 6.20. implies that

$$
K \cdot Y=K H \cdot M
$$

as claimed.
5. Let K and H be locally bounded processes and M and N be continuous local martingales. Show that

$$
\langle K \cdot M, H \cdot N\rangle=K H \cdot\langle M, N\rangle .
$$

Suggestion. By previous Problem,

$$
\langle K \cdot M, H \cdot N\rangle=K \cdot\langle M, H \cdot N\rangle .
$$

By Problem 2. we know that the brackets are symmetric, and therefore,

$$
\langle M, H \cdot N\rangle=\langle H \cdot N, M\rangle=H \cdot\langle N, M\rangle=H \cdot\langle M, N\rangle
$$

again by the previous Problem. Combining these we see that

$$
\langle K \cdot M, H \cdot N\rangle=K \cdot(H \cdot\langle M, N\rangle)=K H \cdot\langle M, N\rangle .
$$

6. Let $X=\alpha K \cdot B$, where B is 1-dimensional Brownian motion and $K_{t}=B_{t}^{2}$. Verify that

$$
\langle X, X\rangle_{t}=\alpha^{2} \int_{0}^{t} B_{s}^{4} \mathrm{~d} s
$$

(Hint: use Problem 5 and the fact that $t=\langle B, B\rangle_{t}$).
Suggestion. By Problem 5, we have that

$$
\langle X, X\rangle_{t}=\langle\alpha K \cdot B, \alpha K \cdot B\rangle_{t}=\alpha^{2}\left(K^{2} \cdot\langle B, B\rangle\right)_{t}
$$

Since $K^{2}=B^{4}$ and $\langle B, B\rangle_{t}=t$, we have that

$$
\left(K^{2} \cdot\langle B, B\rangle\right)_{t}=\int_{0}^{t} B_{s}^{4} \mathrm{~d} s
$$

which implies the claim.
7. Determine continuous local martingale M and locally finite variation process $A \in \mathscr{A}$, such that $A_{0}=M_{0}=0$ and

$$
B_{t}^{4}=B_{0}^{4}+M_{t}+A_{t}
$$

where B is 1-dimensional Brownian motion. (Hint: $B_{t}^{4}=f\left(B_{t}\right)$ when $f(x)=x^{4}$ and Itō's formula.)
Suggestion. Let's use Ito's formula for $f(x)=x^{4}$. Since $f^{\prime}(x)=4 x^{3}$ and $f^{\prime \prime}(x)=$ $12 x^{2}$, we have by the Itō's formula that

$$
f\left(B_{t}\right)=f\left(B_{0}\right)+\int_{0}^{t} f^{\prime}\left(B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(B_{s}\right) \mathrm{d}\langle B, B\rangle_{s}
$$

Now, the first term is a continuous local martingale

$$
M_{t}=\int_{0}^{t} f^{\prime}\left(B_{s}\right) \mathrm{d} B_{s}=4 \int_{0}^{t} B_{s}^{3} \mathrm{~d} B_{s}
$$

and the latter term is of locally finite variation

$$
A_{t}=\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(B_{s}\right) \mathrm{d}\langle B, B\rangle_{s}=6 \int_{0}^{t} B_{s}^{2} \mathrm{~d} s
$$

8. Use Itō's formula to find a polynomial function $f(x, y)$ such that

$$
B_{t}^{6}-f\left(B_{t}, t\right)
$$

is a continuous local martingale. (Hint: Let $f_{0}(x, y)=x^{6}+c_{1} x^{4} y+c_{2} x^{2} y^{2}+c_{3} y^{3}$. With Itō obtain a equations for the coefficients c_{1}, c_{2}, c_{3})
Suggestion. Let's compute the partial derivatives of f_{0} first. To make it clear what the partial derivatives are we will denote them by $\partial_{1}, \partial_{2}$, etc. for differentiation with respect to first, second, etc. variables. We have

$$
\begin{aligned}
& \partial_{1} f_{0}(x, y)=6 x^{5}+4 c_{1} x^{3} y+2 c_{2} x y^{2} \\
& \partial_{2} f_{0}(x, y)=c_{1} x^{4}+2 c_{2} x^{2} y+3 c_{3} y^{2} \\
& \partial_{1}^{2} f_{0}(x, y)=30 x^{4}+12 c_{1} x^{2} y+2 c_{2} y^{2}
\end{aligned}
$$

We don't need to compute $\partial_{1} \partial_{2} f_{0}$ nor $\partial_{2}^{2} f_{0}$, since $t \mapsto t$ is of locally finite variation. Using Itō with $f_{0}\left(B_{t}\right)$ we therefore have,
$f_{0}\left(B_{t}, t\right)=f_{0}\left(B_{0}, 0\right)+\int_{0}^{t} \partial_{1} f_{0}\left(B_{s}, s\right) \mathrm{d} B_{s}+\int_{0}^{t} \partial_{2} f_{0}\left(B_{s}, s\right) \mathrm{d} s+\frac{1}{2} \int_{0}^{t} \partial_{1}^{2} f_{0}\left(B_{s}, s\right) \mathrm{d} s$.
Therefore, the right-hand side is a local martingale, if

$$
\partial_{2} f_{0}+\frac{1}{2} \partial_{1}^{2} f_{0}=0
$$

or

$$
\left\{\begin{array}{l}
c_{1}+\frac{1}{2} \times 30=0 \\
2 c_{2}+\frac{1}{2} \times 12 c_{1}=0 \\
3 c_{3}+\frac{1}{2} \times 2 c_{2}=0
\end{array}\right.
$$

This has a solution

$$
\left\{\begin{array}{l}
c_{1}=-15 \\
c_{2}=45 \\
c_{3}=-15
\end{array}\right.
$$

This means that

$$
f_{0}\left(B_{t}, t\right)=B_{t}^{6}-15 B_{t}^{4} t+45 B_{t}^{2} t^{2}-15 t^{3}
$$

is a local martingale, so by choosing

$$
f(x, y)=15 x^{4} y-45 x^{2} y^{2}+15 y^{3}
$$

the mission is accomplished.

Note. We say that a process X is in class (DL), if $\left\{X_{\tau}: \tau\right.$ is a bounded stopping time $\}$ is uniformly integrable.
9. Let M be a continuous local martingale. Show that if M is in class (DL), then it is a martingale. (Hint: Let $\left(\tau_{n}\right)$ is the sequence as in the Definition 5.10. and let τ be a bounded stopping time. Show that $M_{\tau_{n} \wedge \tau} \rightarrow M_{\tau}$ almost surely, that $\mathbf{E}_{x} M_{\tau_{n} \wedge \tau}=\mathbf{E}_{x} M_{0}$ and that $\left\{M_{\tau_{n} \wedge \tau}\right\}_{n}$ is uniformly integrable. Then have a look at Lemma 5.2. in lecture notes and the Problem 4 in the Excercise sheet 3.)
Suggestion. As in the hint, let $\left(\tau_{n}\right)$ is the sequence as in the Definition 5.10. and let τ be a bounded stopping time. Now since $\tau_{n} \uparrow \infty$ almost surely, we obtain that

$$
\tau \wedge \tau_{n} \uparrow \tau
$$

almost surely and hence by continuity (which was missing from the assumptions first) we have that

$$
M_{\tau_{n} \wedge \tau} \rightarrow M_{\tau}
$$

almost surely. Now if we can show that $\mathbf{E}_{x} M_{\tau}=\mathbf{E}_{x} M_{0}$ we have by the Lemma 5.2. that M is a martingale. Since $M^{\tau_{n}}$ is a uniformly integrable martingale for every n, we can use the Optional Stopping theorem and we deduce that

$$
\mathbf{E}_{x} M_{\tau}^{\tau_{n}}=\mathbf{E}_{x} M_{0}^{\tau_{n}}=\mathbf{E}_{x} M_{0} .
$$

Since $M_{\tau}^{\tau_{n}}=M_{\tau_{n} \wedge \tau}$, we have that

$$
\mathbf{E}_{x} M_{\tau_{n} \wedge \tau}=\mathbf{E}_{x} M_{0}
$$

for every n and so, if we can can change the order of limit $n \rightarrow \infty$ and the expectation, we would obtain

$$
\mathbf{E}_{x} M_{0}=\lim _{n \rightarrow \infty} \mathbf{E}_{x} M_{\tau_{n} \wedge \tau}=\mathbf{E}_{x} \lim _{n \rightarrow \infty} M_{\tau_{n} \wedge \tau}=\mathbf{E}_{x} M_{\tau}
$$

which would then imply the claim by Lemma 5.2. According to Problem 4 in the Excercise sheet 3, we can change the order of the limit and the expectation, if $\left\{M_{\tau_{n} \wedge \tau}\right\}_{n}$ is uniformly integrable. However, since $\tau_{n} \wedge \tau$ is a bounded stopping time, the (DL) assumption shows that $\left\{M_{\tau_{n} \wedge \tau}\right\}_{n}$ is uniformly integrable which finishes the proof.
10. Let $X_{t}=\left|B_{t}\right|^{-1}$ where B_{t} is three-dimensional Brownian motion that starts from $x \neq 0$. In lectures we showed that X_{t} is a local martingale. Show that it is not in class (DL). (Hint: show directly that it is not a martingale by considering the mean $\mathrm{E} X_{t}$ of X_{t}.)
Suggestion. It is enough to show that $m(t):=\mathbf{E}_{x} X_{t}=\mathbf{E}_{x}\left|B_{t}\right|^{-1}$ is not constant function, since if X would be a martingale, then m would be a constant. In order to accomplish this, we will show the following properties:
$-m(0)=|x|^{-1}$
$-\lim _{t \rightarrow \infty} m(t)=0$.
This means that $m(t)<\frac{1}{2}|x|^{-1}$ for large t, i.e. m is not a constant. Hence X cannot be a martingale and but since it is a continuous local martingale, it cannot be of class (DL) by Problem 9.

The property that $m(0)=|x|^{-1}$ is immediate, since

$$
m(0)=\mathbf{E}_{x}\left|B_{0}\right|^{-1}=|x|^{-1}
$$

Just to make this example more interesting, we first show that $\mathbf{E}_{x} X_{t}^{2}<\infty$. This means that local martingale which is even twice integrable does not have to be martingale.

The finiteness of the second moment follows since

$$
\mathbf{E}_{x} X_{t}^{2}=\mathbf{E}_{0}\left|B_{t}+x\right|^{-2} \leq M^{-2}+\mathbf{E}_{0}\left(\left|B_{t}+x\right|^{-2}\left[\left|B_{t}+x\right| \leq M\right]\right)
$$

Since we know the probability transition density of Brownian motion, we can express the latter expectation as

$$
(2 \pi t)^{-3 / 2} \int_{|y+x| \leq M}|x+y|^{-2} e^{-|y|^{2} / 2 t} \mathrm{~d} y .
$$

We will just estimate the exponential function with a constant, which then yields the following estimate

$$
(2 \pi t)^{-3 / 2} \int_{|y+x| \leq M}|x+y|^{-2} e^{-|y|^{2} / 2 t} \mathrm{~d} y \lesssim t^{-3 / 2} \int_{|y| \leq M}|y|^{-2} \mathrm{~d} y=4 \pi t^{-3 / 2} \int_{0}^{M} r^{-2} r^{2} \mathrm{~d} r
$$

where we then used integration in the polar coordinates (note, that is the reason for the appearence of Jacobian determinant r^{2} in the last integral). So, we have deduced that for every $M>0$ we have

$$
\mathbf{E}_{x} X_{t}^{2}=\mathbf{E}_{0}\left|B_{t}+x\right|^{-2} \leq M^{-2}+c M t^{-3 / 2}
$$

and so the second moment is uniformly bounded for $t \geq t_{0}>0$.
Now the Cauchy-Schwarz inequality gives that

$$
\mathbf{E}_{x} X_{t} \leq \sqrt{\mathbf{E}_{x} X_{t}^{2}} \leq \sqrt{M^{-2}+c M t^{-3 / 2}}
$$

which shows that

$$
\limsup _{t \rightarrow \infty} \mathbf{E}_{x} X_{t} \leq M^{-1}
$$

for every $M>0$. Letting $M \rightarrow \infty$ implies that $m(t) \rightarrow 0$ as $t \rightarrow \infty$.
11. We know that for every $x \neq 0$ in the plane (i.e. in \mathbb{R}^{2}) that

$$
\mathbf{P}_{x}\left(\tau_{0}=\infty\right)=1
$$

where x is the starting point of two-dimensional Brownian motion. Show that this holds also for $x=0$. (Hint: let $\nu=\tau_{r}$ be the first hitting time to the sphere of radius r and use strong Markov property at ν. Use this to deduce the claim.)
Suggestion. Let ν be as in the hint. If we assume that $\tau_{0}=\infty$, then $\nu<\tau_{0}$, since we know that $\nu<\infty$. Therefore, we may use the strong Markov property and we obtain that

$$
\mathbf{P}_{x}\left(\tau_{0}=\infty\right)=\mathbf{E}_{x}\left[\tau_{0}=\infty, \nu<\tau_{0}\right]=\mathbf{E}_{x}\left[\nu<\tau_{0}\right] \mathbf{P}_{B_{\nu}}\left(\tau_{0}=\infty\right)=\mathbf{E}_{x} \mathbf{P}_{B_{\nu}}\left(\tau_{0}=\infty\right)
$$

Since we know that $B_{\nu} \neq 0$ almost surely, we know that $\mathbf{P}_{B_{\nu}}\left(\tau_{0}=\infty\right)=1$ almost surely. Therefore,

$$
\mathbf{P}_{x}\left(\tau_{0}=\infty\right)=\mathbf{E}_{x} 1=1
$$

and the claim follows.
12. Suppose there exists a 1-dimensional continuous semimartingale X such that

$$
\mathrm{d} X_{t}=a\left(X_{t}\right) \mathrm{d} B_{t}+b\left(X_{t}\right) \mathrm{d} t
$$

where a and b are bounded and $C^{2}(\mathbb{R}, \mathbb{R})$-functions. Let $Z=f\left(X_{t}\right)$ for $f \in C^{2}(\mathbb{R}, \mathbb{R})$. Use Itō's formula to find a continuous local martingale M and process $A \in \mathscr{A}$ such that $A_{0}=M_{0}=0$ and

$$
Z_{t}=Z_{0}+M_{t}+A_{t}
$$

Furthermore, compute $\langle M, M\rangle$ (Hint. Use the formula in Problem 5 for the computation).
Suggestion. By Itō's formula

$$
Z_{t}=Z_{0}+\int_{0}^{t} f^{\prime}\left(X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{t}\right) \mathrm{d}\langle X, X\rangle_{t}
$$

Since $\mathrm{d} X_{t}=a\left(X_{t}\right) \mathrm{d} B_{t}+b\left(X_{t}\right) \mathrm{d} t$, we see that if we denote $K_{1}(t)=a\left(X_{t}\right)$ and $K_{2}(t)=f^{\prime}\left(X_{t}\right)$, the local martingale part M is

$$
M_{t}=\left(K_{1} \cdot\left(K_{2} \cdot B\right)\right)_{t}=\left(K_{1} K_{2} \cdot B\right)_{t}=\int_{0}^{t} K_{1}(s) K_{2}(s) \mathrm{d} B_{s}=\int_{0}^{t} a\left(X_{s}\right) f^{\prime}\left(X_{s}\right) \mathrm{d} B_{s} .
$$

This also implies with Problem 5 that

$$
\langle M, M\rangle_{t}=K_{1}^{2} K_{2}^{2} \cdot H_{t}=\int_{0}^{t} a\left(X_{s}\right)^{2} f^{\prime}\left(X_{s}\right)^{2} \mathrm{~d} s
$$

The locally finite variation process A is by the Itō formula the remainding terms, i.e.

$$
A_{t}=\int_{0}^{t} b\left(X_{s}\right) f^{\prime}\left(X_{s}\right) \mathrm{d} s+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) \mathrm{d}\langle X, X\rangle_{s}
$$

where the first term is deduced by associativity property $K_{3} \cdot\left(K_{2} \cdot H\right)=K_{3} K_{2} \cdot H$ where $K_{3}(t)=b\left(X_{t}\right)$ and $H_{t}=t$. Since bracket $\langle X, H\rangle=0$ for every semimartingale X and locally finite variation process H, we have $\langle X, X\rangle=\left\langle K_{1} \cdot B, K_{1} \cdot B\right\rangle$. Therefore, by Problem 5

$$
\langle X, X\rangle=K_{1}^{2} \cdot H
$$

and so

$$
A_{t}=\int_{0}^{t} b\left(X_{s}\right) f^{\prime}\left(X_{s}\right) \mathrm{d} s+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) a\left(X_{s}\right)^{2} \mathrm{~d} s
$$

