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Stochastic processes on domains

Suggestions to excercise problem sheet 4

1. Suppose M and N are bounded martingales. Show that

〈M,N 〉τ = 〈M τ , N 〉.

(Hint: use uniqueness in Theorem 6.10. and Optional Stopping Theorem.)

Suggestion. Since MN − 〈M,N 〉 is a continuous local martinale and since it

is bounded, it is a martingale (see Problem 9, which implies that every bounded

continuous local martingale is a martingale).

Therefore, we have by Optional Stopping Theorem, that

M̄ := M τN τ − 〈M,N 〉τ

is a bounded martingale. We also have that

M τN − 〈M τ , N 〉

is a continuous bounded martingale and thus, if we can show that

N̄ := M τ (N −N τ )

is a bounded martingale, then

M τN − 〈M,N 〉τ = N̄ + M̄

is also a bounded martingale. Therefore, the uniqueness implies the claim, once we

have verified that N̄ := M τ (N −N τ ) is a martingale.

In order to show this, let η be bounded stopping time. Now

N̄η = Mτ∧η(Nη −Nτ∧η).

If η ≤ τ , then Nτ∧η = Nη, so the right-hand side vanishes. In other words,

N̄η = [ η > τ ]Mτ (Nη −Nτ ).



Therefore, by taking the conditional expectation at the stopping time τ , we obtain

E
(
N̄η |Fτ

)
= [ η > τ ]Mτ (E (Nη |Fτ ) −Nτ ).

By Optional Stopping Theorem,

[ η > τ ]E (Nη |Fτ ) = [ η > τ ]Nτ

so the right-hand vanishes, i.e.

E
(
N̄η |Fτ

)
= 0

which implies then that

E N̄η = E E
(
N̄η |Fτ

)
= 0 = E N̄0

Now Lemma 5.2. implies that N̄ is martingale.

2. Let N and M be continuous local martingales. Show that

〈M,N 〉 = 〈N,M 〉

(Hint: use Theorem 6.10 and uniqueness)

Suggestion. Let A = 〈M,N 〉. Since MN−A = NM−A and MN−A is continuous

local martingale, we have by uniqueness that A = 〈N,M 〉.

3. Let N1, N2 and M be continuous local martingales and α ∈ R. Show that

〈M,N1 + αN2 〉 = 〈M,N1 〉+ α〈M,N2 〉

(Hint: use Theorem 6.10 and uniqueness)

Suggestion. Let A = 〈M,N1 〉 + α〈M,N2 〉. Since M(N1 + αN2) − A = MN1 −
〈M,N1 〉+αMN2−α〈M,N2 〉 and the right-hand side is a continuous local martingale

by Theorem 6.10, we have by uniqueness that A = 〈M,N1 + αN2 〉.

Note: In the following two Problems, you may assume that it is known that

K1 · (K2 ·H) = K1K2 ·H

for locally bounded processes K1, K2 and H ∈ A .



4. Let K and H be locally bounded processes (Definition 6.18) and let M be a

continuous local martingale. Let Y = H ·M be a continuous local martingale. Show

that

K · Y = KH ·M

(Hint: take N a continuous local martingale and use Theorem 6.20 twice to express

〈K · Y,N 〉 as an stochastic integral with respect to a process 〈M,N 〉, and then use

uniqueness in Theorem 6.20).

Suggestion. Let N be a continuous local martingale. By Theorem 6.20. we have

that

〈K · Y,N 〉 = K · 〈Y,N 〉 = K · 〈H ·M,N 〉 = K · (H · 〈M,N 〉).

Moreover, by Theorem 6.20. we also have that

〈KH ·M,N 〉 = KH〈M,N 〉.

We see that the right-hand side coincides since

K · (H · 〈M,N 〉) = KH · 〈M,N 〉.

Therefore, the left-hand side coincide, i.e.

〈K · Y,N 〉 = 〈KH ·M,N 〉

which by the uniqueness in Theorem 6.20. implies that

K · Y = KH ·M

as claimed.

5. Let K and H be locally bounded processes and M and N be continuous local

martingales. Show that

〈K ·M,H ·N 〉 = KH · 〈M,N 〉.

Suggestion. By previous Problem,

〈K ·M,H ·N 〉 = K · 〈M,H ·N 〉.



By Problem 2. we know that the brackets are symmetric, and therefore,

〈M,H ·N 〉 = 〈H ·N,M 〉 = H · 〈N,M 〉 = H · 〈M,N 〉

again by the previous Problem. Combining these we see that

〈K ·M,H ·N 〉 = K · (H · 〈M,N 〉) = KH · 〈M,N 〉.

6. Let X = αK ·B, where B is 1-dimensional Brownian motion and Kt = B2
t . Verify

that

〈X,X 〉t = α2
ˆ t

0
B4
s ds

(Hint: use Problem 5 and the fact that t = 〈B,B 〉t).
Suggestion. By Problem 5, we have that

〈X,X 〉t = 〈αK ·B,αK ·B 〉t = α2(K2 · 〈B,B 〉)t

Since K2 = B4 and 〈B,B 〉t = t, we have that

(K2 · 〈B,B 〉)t =
ˆ t

0
B4
s ds

which implies the claim.

7. Determine continuous local martingale M and locally finite variation process

A ∈ A , such that A0 = M0 = 0 and

B4
t = B4

0 +Mt + At

where B is 1-dimensional Brownian motion. (Hint: B4
t = f(Bt) when f(x) = x4 and

Itō’s formula.)

Suggestion. Let’s use Itō’s formula for f(x) = x4. Since f ′(x) = 4x3 and f ′′(x) =
12x2, we have by the Itō’s formula that

f(Bt) = f(B0) +
ˆ t

0
f ′(Bs) dBs + 1

2

ˆ t

0
f ′′(Bs) d 〈B,B 〉s

Now, the first term is a continuous local martingale

Mt =
ˆ t

0
f ′(Bs) dBs = 4

ˆ t

0
B3
s dBs



and the latter term is of locally finite variation

At = 1
2

ˆ t

0
f ′′(Bs) d〈B,B 〉s = 6

ˆ t

0
B2
s ds

8. Use Itō’s formula to find a polynomial function f(x, y) such that

B6
t − f(Bt, t)

is a continuous local martingale. (Hint: Let f0(x, y) = x6 + c1x
4y + c2x

2y2 + c3y
3.

With Itō obtain a equations for the coefficients c1, c2, c3)

Suggestion. Let’s compute the partial derivatives of f0 first. To make it clear what

the partial derivatives are we will denote them by ∂1, ∂2, etc. for differentiation with

respect to first, second, etc. variables. We have

∂1f0(x, y) = 6x5 + 4c1x
3y + 2c2xy

2

∂2f0(x, y) = c1x
4 + 2c2x

2y + 3c3y
2

∂2
1f0(x, y) = 30x4 + 12c1x

2y + 2c2y
2

We don’t need to compute ∂1∂2f0 nor ∂2
2f0, since t 7→ t is of locally finite variation.

Using Itō with f0(Bt) we therefore have,

f0(Bt, t) = f0(B0, 0) +
ˆ t

0
∂1f0(Bs, s) dBs +

ˆ t

0
∂2f0(Bs, s) ds+ 1

2

ˆ t

0
∂2

1f0(Bs, s) ds.

Therefore, the right-hand side is a local martingale, if

∂2f0 + 1
2∂

2
1f0 = 0

or 
c1 + 1

2 × 30 = 0

2c2 + 1
2 × 12c1 = 0

3c3 + 1
2 × 2c2 = 0

This has a solution 
c1 = −15

c2 = 45

c3 = −15



This means that

f0(Bt, t) = B6
t − 15B4

t t+ 45B2
t t

2 − 15t3

is a local martingale, so by choosing

f(x, y) = 15x4y − 45x2y2 + 15y3

the mission is accomplished.

Note. We say that a processX is in class (DL), if { Xτ : τ is a bounded stopping time }
is uniformly integrable.

9. Let M be a continuous local martingale. Show that if M is in class (DL), then

it is a martingale. (Hint: Let (τn) is the sequence as in the Definition 5.10. and

let τ be a bounded stopping time. Show that Mτn∧τ → Mτ almost surely, that

ExMτn∧τ = ExM 0 and that {Mτn∧τ}n is uniformly integrable. Then have a look at

Lemma 5.2. in lecture notes and the Problem 4 in the Excercise sheet 3.)

Suggestion. As in the hint, let (τn) is the sequence as in the Definition 5.10. and

let τ be a bounded stopping time. Now since τn ↑ ∞ almost surely, we obtain that

τ ∧ τn ↑ τ

almost surely and hence by continuity (which was missing from the assumptions first)

we have that

Mτn∧τ →Mτ

almost surely. Now if we can show that ExMτ = ExM0 we have by the Lemma

5.2. that M is a martingale. Since M τn is a uniformly integrable martingale for every

n, we can use the Optional Stopping theorem and we deduce that

ExM
τn
τ = ExM

τn
0 = ExM0 .

Since M τn
τ = Mτn∧τ , we have that

ExMτn∧τ = ExM0

for every n and so, if we can can change the order of limit n→∞ and the expectation,

we would obtain

ExM0 = lim
n→∞

ExMτn∧τ = Ex lim
n→∞

Mτn∧τ = ExMτ



which would then imply the claim by Lemma 5.2. According to Problem 4 in the Ex-

cercise sheet 3, we can change the order of the limit and the expectation, if {Mτn∧τ}n
is uniformly integrable. However, since τn ∧ τ is a bounded stopping time, the (DL)

assumption shows that {Mτn∧τ}n is uniformly integrable which finishes the proof.

10. Let Xt = |Bt|−1 where Bt is three-dimensional Brownian motion that starts from

x 6= 0. In lectures we showed that Xt is a local martingale. Show that it is not in

class (DL). (Hint: show directly that it is not a martingale by considering the mean

EXt of Xt.)

Suggestion. It is enough to show that m(t) := ExXt = Ex |Bt|−1 is not constant

function, since if X would be a martingale, then m would be a constant. In order to

accomplish this, we will show the following properties:

− m(0) = |x|−1

− limt→∞m(t) = 0.

This means that m(t) < 1
2 |x|

−1 for large t, i.e. m is not a constant. Hence X cannot

be a martingale and but since it is a continuous local martingale, it cannot be of

class (DL) by Problem 9.

The property that m(0) = |x|−1 is immediate, since

m(0) = Ex |B0|−1 = |x|−1

Just to make this example more interesting, we first show that ExX
2
t < ∞. This

means that local martingale which is even twice integrable does not have to be

martingale.

The finiteness of the second moment follows since

ExX
2
t = E0 |Bt + x|−2 ≤M−2 + E0 (|Bt + x|−2[ |Bt + x| ≤M ])

Since we know the probability transition density of Brownian motion, we can express

the latter expectation as

(2πt)−3/2
ˆ
|y+x|≤M

|x+ y|−2e−|y|
2/2t dy.

We will just estimate the exponential function with a constant, which then yields

the following estimate

(2πt)−3/2
ˆ
|y+x|≤M

|x+ y|−2e−|y|
2/2t dy . t−3/2

ˆ
|y|≤M

|y|−2 dy = 4πt−3/2
ˆ M

0
r−2r2 dr



where we then used integration in the polar coordinates (note, that is the reason for

the appearence of Jacobian determinant r2 in the last integral). So, we have deduced

that for every M > 0 we have

ExX
2
t = E0 |Bt + x|−2 ≤M−2 + cMt−3/2

and so the second moment is uniformly bounded for t ≥ t0 > 0.

Now the Cauchy–Schwarz inequality gives that

ExXt ≤
√

ExX2
t ≤

√
M−2 + cMt−3/2

which shows that

lim sup
t→∞

ExXt ≤M−1

for every M > 0. Letting M →∞ implies that m(t)→ 0 as t→∞.

11. We know that for every x 6= 0 in the plane (i.e. in R2) that

Px ( τ0 =∞ ) = 1

where x is the starting point of two-dimensional Brownian motion. Show that this

holds also for x = 0. (Hint: let ν = τr be the first hitting time to the sphere of radius

r and use strong Markov property at ν. Use this to deduce the claim.)

Suggestion. Let ν be as in the hint. If we assume that τ0 =∞, then ν < τ0, since

we know that ν < ∞. Therefore, we may use the strong Markov property and we

obtain that

Px ( τ0 =∞ ) = Ex [ τ0 =∞, ν < τ0 ] = Ex [ ν < τ0 ]PBν ( τ0 =∞ ) = Ex PBν ( τ0 =∞ )

Since we know that Bν 6= 0 almost surely, we know that PBν ( τ0 =∞ ) = 1 almost

surely. Therefore,

Px ( τ0 =∞ ) = Ex 1 = 1

and the claim follows.

12. Suppose there exists a 1-dimensional continuous semimartingale X such that

dXt = a(Xt) dBt + b(Xt) dt



where a and b are bounded and C2(R,R)-functions. Let Z = f(Xt) for f ∈ C2(R,R).
Use Itō’s formula to find a continuous local martingale M and process A ∈ A such

that A0 = M0 = 0 and

Zt = Z0 +Mt + At

Furthermore, compute 〈M,M 〉 (Hint. Use the formula in Problem 5 for the compu-

tation).

Suggestion. By Itō’s formula

Zt = Z0 +
ˆ t

0
f ′(Xt) dXt + 1

2

ˆ t

0
f ′′(Xt) d〈X,X 〉t

Since dXt = a(Xt) dBt + b(Xt) dt, we see that if we denote K1(t) = a(Xt) and

K2(t) = f ′(Xt), the local martingale part M is

Mt = (K1 · (K2 ·B))t = (K1K2 ·B)t =
ˆ t

0
K1(s)K2(s) dBs =

ˆ t

0
a(Xs)f ′(Xs) dBs.

This also implies with Problem 5 that

〈M,M 〉t = K2
1K

2
2 ·Ht =

ˆ t

0
a(Xs)2f ′(Xs)2 ds.

The locally finite variation process A is by the Itō formula the remainding terms, i.e.

At =
ˆ t

0
b(Xs)f ′(Xs) ds+ 1

2

ˆ t

0
f ′′(Xs) d〈X,X 〉s

where the first term is deduced by associativity property K3 · (K2 ·H) = K3K2 ·H
where K3(t) = b(Xt) and Ht = t. Since bracket 〈X,H 〉 = 0 for every semimartingale

X and locally finite variation process H, we have 〈X,X 〉 = 〈K1 · B,K1 · B 〉.
Therefore, by Problem 5

〈X,X 〉 = K2
1 ·H

and so

At =
ˆ t

0
b(Xs)f ′(Xs) ds+ 1

2

ˆ t

0
f ′′(Xs)a(Xs)2 ds


